欢迎来到天天文库
浏览记录
ID:55914676
大小:35.00 KB
页数:4页
时间:2020-06-14
《什么是抽屉原理呢.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、什么是抽屉原理呢?抽屉原理可以这样表达:把(n+1)个物体,放进n个抽屉里去,不论怎样放法,至少有一个抽屉内的物体不少于2个。 A组: 1.有29个人都在2月份出生,其中一人说:“我的生日肯定和其他人重复。”这话对吗? 2.某校有366名1979年出生的学生,那么是否至少有2个学生的生日是同一天的? 3.参加数学竞赛的210名学生,能否保证有18名或18名以上的学生在同一个月出生?为什么? 4.一个袋子里有些球,这些球除颜色不同外,其他都相同。其中红球10个,白球9个,黄球8个,蓝球2个,某人闭着眼睛从其中取出若干个。试问他至少要取
2、多少个球,方能保证至少有4个球颜色相同? 5.有黑色、白色、黄色的筷子各8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?(1986年“华罗庚金杯”少年数学邀请赛初赛试题) B组: 6.有红、黄、蓝、黑四种颜色的小球各若干个,每个人可以从中任意选择两个,那么需要几个人才能保证至少有2人选的小球颜色相同?为什么? 7.某电影院共有1987个座位,有一天,这家电影院上、下午各演一场电影。看电影的正巧是甲、乙两所中学的各1987名师生。同一所学校的学生有的看上午场,也有的看下午场。因此,有人
3、推断说:“这天看电影时,肯定有的座位在上午、下午坐的是两所不同学校的师生。”你能说明这种断言正确与否吗? 8.10名乒乓球运动员进行单循环比赛(每两个运动员之间都要赛一场而且只赛一场)。证明每天比赛结束时,一定有两名运动员,他们累积比赛的场数是相同的。 9.在我国至少有两个人出生的时间相差不会超过4秒钟。你能证明这个结论是正确的吗? C组: 10.证明在任何6个人的聚会上,总有3个人互相认识或者3个人互相不认识。 11.老师将一批课外读物随意分给10名学生,保证每个学生至少分到1本,可以肯定在这10名学生中,一定有一些学生所得到的书
4、的总和是10的倍数吗?为什么? 12.从13个自然数中,一定可以找到两个,它们的差是12的倍数。 答案: A组:1.不对。因为闰年2月份有29天,29个人有可能两两生日都不相同。 2.这道题中的“1979年”是平年,一年有365天,应用抽屉原理,把365天看作365个抽屉,把366名学生看作366本书,把366本书放到365个抽屉中,至少有一个抽屉中有2本书。因此,366名学生中至少有2名学生的生日是同一天的。3.这道题问的是在210名学生中能否有18名以上的学生是同一个月出生的。应用抽屉原理,把一年的12个月看作12个抽屉,把210
5、名学生看作210本书,如果每个抽屉里放17本书,那么共放17×12=204(本),因为210>204,所以一定有18本或18以上的书在同一个抽屉里。因此,参加数学竞赛的210名学生中,肯定有18名或18名以上的学生在同一个月出生。 4.3+3+3+2+1=12(个)。 5.在黑暗中摸筷子,如果摸8根都是同一颜色,只能保证有一双筷子。再摸2根,如果颜色不同,一样一根,也不能配成一双。这时,10根筷子共有三种颜色,再摸一根,不论是什么颜色,总可以从“一样一根”的筷子中选出一根来配成一双。所以,至少要取出11根,才能保证取出颜色不同的两双筷子。
6、 B组:6.这道题问的是需要几个人才能保证至少有2人选的小球颜色相同,那么从红、黄、蓝、黑四种颜色的小球中任意选择两个,有几种不同的选法呢?共有10种不同的选法:(1)红+红;(2)黄+黄;(3)蓝+蓝;(4)黑+黑;(5)红+黄;(6)红+蓝;(7)红+黑;(8)黄+蓝;(9)黄+黑;(10)蓝+黑。即10个人参加选,每人选的小球颜色不相同。应用抽屉原理,把10种选法看作10个抽屉,每人任意选2个球,需要有11人,才能保证至少有2人选的小球颜色相同。7.这种说法是正确的。甲乙两校师生都是1987名,电影院的座位也恰是1987个,上、下午两
7、场共有1987×2人看电影,显然上、下午都满场。 由于电影院共有1987个座位,是个奇数,且为:993×2+1,因此,上午场看电影的师生中至少有一个学校的人数不少于994人,假设甲校看电影人数不少于994人,那么甲校下午看电影的人数不多于1987-994=993(人),这些学生即使全坐在上午甲校学生的座位上,也不能坐满,至少还余下一个座位,这个座位下午要坐的一定是乙校看电影的师生。8.由于比赛是单循环进行的,所以在整个比赛过程中每个运动员都要赛9场。这样在每天比赛结束时,都可以出现两种情况,一种情况是每一运动员都还没有赛9场,也就是说这9名
8、运动员已经赛过的场数只可以是0,1,2,3,4,5,6,7,8这9种。这9种可能性就是抽屉,元素是10名运动员,可见一定有两个人赛的场数是一样的。 还有一种情况,
此文档下载收益归作者所有