专题:电磁感应现象中有关电容器类问题 及问题详解.doc

专题:电磁感应现象中有关电容器类问题 及问题详解.doc

ID:55896820

大小:328.00 KB

页数:7页

时间:2020-06-13

专题:电磁感应现象中有关电容器类问题 及问题详解.doc_第1页
专题:电磁感应现象中有关电容器类问题 及问题详解.doc_第2页
专题:电磁感应现象中有关电容器类问题 及问题详解.doc_第3页
专题:电磁感应现象中有关电容器类问题 及问题详解.doc_第4页
专题:电磁感应现象中有关电容器类问题 及问题详解.doc_第5页
资源描述:

《专题:电磁感应现象中有关电容器类问题 及问题详解.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面的光滑平行金属导轨间距为L,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问:

2、(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度vm的大小。试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面,轨道上串联一电容器C(

3、开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间围有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab棒下滑过程中某一瞬时加速度为ai,则经过一微小的时间间隔Δt,其速度的增加量为Δv=ai·Δt.棒中产生的感应电动势的增加量为:ΔE=BLΔv=BLai·Δt电容器的极板间电势差的增加量为:ΔUi=ΔE=BLai·Δt电容器电荷量的增加量为:ΔQ=C·ΔU=CBLai·Δt电路中的充电电流为:I==CBLaiab棒所受的安培力为:F=BLI=CB2L2ai由牛顿

4、第二定律得:mg-F=mai,即mg-CB2L2ai=mai,所以,ai=,可见,棒的加速度与时间无关,是一个常量,即棒ab向下做匀加速直线运动.所以要求的速度为v=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L,导轨平面与水平面重合,左端用导线连接电容为C的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B、方向竖直向上.一质量为m、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计

5、滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q,则这个高度h多大?解:(1)电容器两端的电压U等于导体棒上的电动势E,有:U=E=BLv(2)金属棒速度从v增大到v+△v的过程中,用时△t(△t→0),加速度为a,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上

6、端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。将单刀双掷开关接到a点,一根电阻不计、质量为m的导体棒在轨道底端获得初速度v0后沿着轨道向上运动,到达最高点时,单刀双掷开关接b点,经过一段时间导体棒又回到轨道底端,已知定值电阻的阻值为R,电容器的电容为C,重力加速度为g,轨道足够长,轨道电阻不计,求:(1)导体棒上滑过程中加速度的大小;(2)若已知导体棒到达轨道底端的速度为v,求导体棒下滑过程中定值电阻产生的热量和导体棒运动的时间。解:(1)导体棒上滑的过程中,根据牛顿第二定律得:又,有:联立解得:(2)导体棒上滑过程中,有

7、导体棒下滑的过程中,由动量定理得:而联立解得:导体棒下滑的过程中,由能量守恒定律得:解得:5、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。