欢迎来到天天文库
浏览记录
ID:55824398
大小:1.09 MB
页数:23页
时间:2020-06-09
《空间向量的正交分解其坐标表示.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.4空间向量的正交分解及其坐标表示平面向量基本定理:平面向量的正交分解及坐标表示xyo【温故知新】任意不共面的三个向量都可做为空间的一个基底。一、空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组{x,y,z},使都叫做基向量给定一个空间坐标系和向量,且设e1,e2,e3为坐标向量,由空间向量基本定理,存在唯一的有序实数组(x,y,z)使p=xe1+ye2+ze3有序数组(x,y,z)叫做p在空间直角坐标系O--xyz中的坐标,记作.P=(x,y,z)三、空间向量的直角坐标系xyzOe1e2e3例题已知空间四边形OABC,其对角线
2、为OB,AC,M,N,分别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向量OA,OB,OC表示向量OP,OQ.BOACPNMQ练习.空间四边形OABC中,OA=a,OB=b,OC=c点M在OA上,且OM=2MA,N为BC的中点,则MN=().OABCMN(A)a-b+c122312(B)-a+b+c122312(C)a+b-c122312(D)a+b-c122323练习23.1.5空间向量运算的坐标表示【温故知新】平面向量运算的坐标表示:【新知探究】平面向量运算的坐标表示:类比推广空间向量运算的坐标表示:例1.已知解:【应用举例】【新知探究】平面向量运算的
3、坐标表示:类比推广空间向量运算的坐标表示:在空间直角坐标系中,已知 、,则空间两点间的距离公式【新知探究】【应用举例】例2.正方体ABCD—A1B1C1D1中,E1、F1分别是A1B1、C1D1的一个四等分点,求:BE1与DF1所成角的余弦值.【应用举例】(1)建立直角坐标系,(2)把点、向量坐标化,(3)对向量计算或证明。例2.正方体ABCD—A1B1C1D1中,E1、F1分别是A1B1、C1D1的一个四等分点,【应用举例】变式1:E是A1B1的一个四等分点,求证:AE∥DF1.E所以AE∥DF1.变式2:F是AA1的一个四等分点,求证:BF⊥DF1.F即
4、BF⊥DF1.例2.正方体ABCD—A1B1C1D1中,E1、F1分别是A1B1、C1D1的一个四等分点,【应用举例】G变式3:G是BB1的一个四等分点,H为AA1上的一点,若GH⊥DF1,试确定H点的位置.H即当H为AA1的中点时,能使GH⊥DF1.(09广东理)已知正方体ABCD—A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F、G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E,G在平面DCC1D1内的正投影(2)证明:直线FG1⊥平面FEE1;(3)求异面直线E1G1与EA所成角的正弦值.【尝试高考】EFE1GG1(09广东理)已知正方
5、体ABCD—A1B1C1D1的棱长为2,点E是正方形BCC1B1的中心,点F、G分别是棱C1D1,AA1的中点.设点E1,G1分别是点E,G在平面DCC1D1内的正投影(2)证明:直线FG1⊥平面FEE1;(3)求异面直线E1G1与EA所成角的正弦值.【尝试高考】EFE1GG1今天你学到了什么呢?1.基本知识:(1)向量的加减、数乘和数量积运算的坐标表示;(2)两个向量的夹角公式和垂直、平行判定的坐标表示。2.思想方法:用向量坐标法计算或证明几何问题(1)建立直角坐标系,(2)把点、向量坐标化,(3)对向量计算或证明。【课堂小结】练习1、3
此文档下载收益归作者所有