欢迎来到天天文库
浏览记录
ID:55774341
大小:22.49 KB
页数:11页
时间:2020-06-04
《统计学的历史与今天.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、统计学的历史与今天——《社会统计学与数理统计学的统一》理论 《 社会统计学与数理统计学的统一》理论 统计学是一门通过搜索、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。 据权威统计学史记载,从17世纪开始就有了“政治算术”、“国势学”,即初级的社会统计学,起源于英国、德国。几乎同时在意大利出现了“赌博数学”,即初级的概率论。直到19世纪,由于概率论出现了大数定理和误差理
2、论,才形成了初级的数理统计学。 也就是说,社会统计学的形成早于数理统计学两个世纪。 由于社会统计学广泛地用于经济和政治,所以得到各国历届政府的极大重视,并得到系统的发展。而数理统计在20世纪40年代以后,由于概率论的发展,而得到飞速发展。经过近400年的变迁,目前世界上已形成社会统计学和数理统计学两大体系。两体系争论不休,难分伯仲。 王见定教授经过30年的学习与研究,发现了社会统计学与数理统计学的联系与区别。它们的关系与著名牛顿力学与相对论力学关系非常相似。 相对论力学在接近光速时使用,而大多数情况
3、下是远离光速的,此时使用牛顿力学既准确又方便。如果硬套相对论力学,则是杀鸡用了宰牛刀,费力不讨好。社会统计学在描写变量时使用,数理统计学在描写随机变量时使用。 我们知道变量与随机变量是既有联系又有区别的。当变量取值的概率不是1时,变量就变成了随机变量;当随机变量取值的概率为1时,随机变量就变成了变量。 变量与随机变量的联系与区别搞清楚了,社会统计学与数理统计学的关系就搞清楚了。以后,在描述变量时,大胆地使用社会统计学;在描述随机变量时,就用数理统计学。如果在描述变量时非用数理统计学,那就是杀鸡用了宰牛
4、刀。 近70年,由于数理统计学的飞速发展,大有“吃掉”社会统计学的势头,尤其是以美国为代表的发达国家,几乎认为统计学就是数理统计学。实际上,这是一个极大的误区。王见定教授的研究已经说明了数理统计学永远“吃不掉”社会统计学,今后的日子,将是社会统计学与数理统计学的共存与互补。 社会统计学与数理统计学的争论可以结束了。 结束语 “社会统计学与数理统计学的统一”理论对近四百年历史的统计学进行了科学的梳理,规范了整个统计学的发展,结束了一百年来社会统计学与数理统计学之间的争论。由于经济是通过统计学进行
5、计量和分析的,所以社会统计学与数理统计学的统一,必将从整体上提高经济学的分析水平。 作者简介: 王见定教授是我国早期的国际统计学会会员,国际著名数学家,著有:半解析函数与共轭解析函数。 转载:前沿科学2008年2期,前沿科学是由科技部主办,编委主任:宋健.委员有:丁肇中,李政道.杨振宁,罗伯特.劳伦斯.库恩等...国际著名人士。 “社会统计学与数理统计学的统一”理论的重大意义2011-10-2323:05 王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量
6、,而变量和随机变量是两个既有区别又有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现。 我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基
7、础和促进了它们的蓬勃发展。可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相互的转化的意义称为巨大、也就不视为过。 下面我们回到:“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。它结束了近400年来几十种甚至上百种以上五花八门种类的统计学的混战局面,使它们回到正确的
8、轨道上来。 由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通
此文档下载收益归作者所有