高中数学131《函数的单调性与导数》课件新人教A版选修.ppt

高中数学131《函数的单调性与导数》课件新人教A版选修.ppt

ID:55678867

大小:478.50 KB

页数:22页

时间:2020-05-24

高中数学131《函数的单调性与导数》课件新人教A版选修.ppt_第1页
高中数学131《函数的单调性与导数》课件新人教A版选修.ppt_第2页
高中数学131《函数的单调性与导数》课件新人教A版选修.ppt_第3页
高中数学131《函数的单调性与导数》课件新人教A版选修.ppt_第4页
高中数学131《函数的单调性与导数》课件新人教A版选修.ppt_第5页
资源描述:

《高中数学131《函数的单调性与导数》课件新人教A版选修.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、1.3.1函数的单调性与导数(4).对数函数的导数:(5).指数函数的导数:(3).三角函数:(1).常函数:(C)/0,(c为常数);(2).幂函数:(xn)/nxn1一、复习回顾:基本初等函数的导数公式函数y=f(x)在给定区间G上,当x1、x2∈G且x1<x2时函数单调性判定单调函数的图象特征yxoabyxoab1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;若f(x)在G上是增函数或减函数,增函数减函数则f(x)在G上具有严格的单调性。G称为单调区间G

2、=(a,b)二、复习引入:oyxyox1oyx1在(-∞,0)和(0,+∞)上分别是减函数。但在定义域上不是减函数。在(-∞,1)上是减函数,在(1,+∞)上是增函数。在(-∞,+∞)上是增函数概念回顾画出下列函数的图像,并根据图像指出每个函数的单调区间(1)函数的单调性也叫函数的增减性;(2)函数的单调性是对某个区间而言的,它是个局部概念。这个区间是定义域的子集。(3)单调区间:针对自变量x而言的。若函数在此区间上是增函数,则为单调递增区间;若函数在此区间上是减函数,则为单调递减区间。以前,我们用定义来判断函数的单调性.在假设x1

3、

4、少,即h(t)是减函数.相应地,(1)(2)xyOxyOxyOxyOy=xy=x2y=x3观察下面一些函数的图象,探讨函数的单调性与其导函数正负的关系.在某个区间(a,b)内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.如果恒有,则是常数。题1已知导函数的下列信息:当14,或x<1时,当x=4,或x=1时,试画出函数的图象的大致形状.解:当14,或x<1时,可知在此区间内单调递减;当x=4,或x=1时,综上,函数图象的大致形状如右图所示.xyO1

5、4题2判断下列函数的单调性,并求出单调区间:解:(1)因为,所以因此,函数在上单调递增.(2)因为,所以当,即时,函数单调递增;当,即时,函数单调递减.题2判断下列函数的单调性,并求出单调区间:解:(3)因为,所以因此,函数在上单调递减.(4)因为,所以当,即时,函数单调递增;当,即时,函数单调递减.1、求可导函数f(x)单调区间的步骤:(1)求f’(x)(2)解不等式f’(x)>0(或f’(x)<0)(3)确认并指出递增区间(或递减区间)2、证明可导函数f(x)在(a,b)内的单调性的方法:(1)求f’(x)(2)确认f’(x)在

6、(a,b)内的符号(3)作出结论练习下列函数的单调性,并判断求出单调区间:例3如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(A)(B)(C)(D)htOhtOhtOhtO一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.或内的图象“陡峭”,如图,函数在在或内的图象平缓.练习2.函数的图象如图所示,试画出导函数图象的大致形状练习3.讨论二

7、次函数的单调区间.解:由,得,即函数的递增区间是;相应地,函数的递减区间是由,得,即函数的递增区间是;相应地,函数的递减区间是练习4.求证:函数在内是减函数.解:由,解得,所以函数的递减区间是,即函数在内是减函数.求参数的取值范围例5:求参数解:由已知得因为函数在(0,1]上单调递增在某个区间上,,f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到是不够的。还有可能导数等于0也能使f(x)在这个区间上单调,所以对于能否取到等号的问题需要单独验证练习:已知函数在R上是减函数,求的取值范围。例6:方

8、程根的问题求证:方程只有一个根。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。