欢迎来到天天文库
浏览记录
ID:5561507
大小:466.50 KB
页数:17页
时间:2017-11-16
《数学:2.1.1《离散型随机变量及其分布列-离散型随机变量》ppt课件(新人教a版-选修2-3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课标人教版课件系列《高中数学》选修2-32.1.1《离散型随机变量及其分布列-随机变量》教学目标1.了解随机变量、离散型随机变量、连续型随机变量的意义,并能说明随机变量取的值所表示的随机试验的结果2.通过本课的学习,能举出一些随机变量的例子,并能识别是离散型随机变量,还是连续型随机变量教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时定义思考复习引入问题提出本课小结思考三例1:某人在射击训练中,射击一次,命中的环数.例2:某纺织公司的某次产品检验,在可能含有次品的100件产品中任意抽取4
2、件,其中含有的次品件数.若用η表示所含次品数,η有哪些取值?若用ξ表示命中的环数,ξ有哪些取值?ξ可取0环、1环、2环、···、10环,共11种结果η可取0件、1件、2件、3件、4件,共5种结果思考:把一枚硬币向上抛,可能会出现哪几种结果?能否用数字来刻划这种随机试验的结果呢?说明:(1)任何一个随机试验的结果我们可以进行数量化;(2)同一个随机试验的结果,可以赋不同的数值.ε=0,表示正面向上;ε=1,表示反面向上练习一练习二定义:如果随机实验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。随机变量常用希腊字母ξ、η等表示。1.如果随机变量可能取的值可以按次序一一列出(可以
3、是无限个)这样的随机变量叫做离散型随机变量.2.如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量.注:(1)有些随机试验的结果虽然不具有数量性质,但也可以用数量来表达。如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上.(2)若ξ是随机变量,η=aξ+b,a、b是常数,则η也是随机变量附:随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值。练习一:写出下列各随机变量可能的取值:(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数.(2)一个袋中装有5个白球和5个黑
4、球,从中任取3个,其中所含白球数 .(3)抛掷两个骰子,所得点数之和.(4)接连不断地射击,首次命中目标需要的射击次数 .(5)某一自动装置无故障运转的时间 .(6)某林场树木最高达30米,此林场树木的高度 .离散型连续型( =1、2、3、···、10)( 内的一切值)( 内的一切值)( =0、1、2、3)注:随机变量即是随机试验的试验结果和实数之间的一种对应关系.1.将一颗均匀骰子掷两次,不能作为随机变量的是()(A)两次出现的点数之和(B)两次掷出的最大点数(C)第一次减去第二次的点数差(D)抛掷的次数D2.某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要买50只,
5、但不得超过80只.商厦有优惠规定:一次购买小于或等于50只的不优惠.大于50只的,超出的部分按原价格的7折优惠.已知水杯原来的价格是每只6元.这个人一次购买水杯的只数ξ是一个随机变量,那么他所付款η是否也为一个随机变量呢?ξ、η有什么关系呢?3.1.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取出两个小球,设两个小球号码之和为 ,则 所有可能值的个数是____个;“”表示.“第一次抽1号、第二次抽3号,或者第一次抽1号、第二次抽3号,或者第一次、第二次都抽2号.9答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得,也就是说“
6、>4”就是“=5”.所以,“>4”表示第一枚为6点,第二枚为1点.2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1)“ξ>4”表示的试验结果是什么?(2)P(ξ>4)=?2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:(1)“ξ>4”表示的试验结果是什么?(2)P(ξ>4)=?4.一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=___________。(用式子表示)答:(1)因为一枚骰子的
7、点数可以是1,2,3,4,5,6六种结果之一,由已知得,也就是说“>4”就是“=5”.所以,“>4”表示第一枚为6点,第二枚为1点.1.随机变量是随机事件的结果的数量化.随机变量ξ的取值对应于随机试验的某一随机事件。随机变量是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的这与函数概念的本质是一样的,只不过在函数概念中,函数f(x)的自变量x是实数,而在随机变量的概念中,随机变量ε的自变量是试验结果。3.若ξ是随机
此文档下载收益归作者所有