正弦定理上课课件

正弦定理上课课件

ID:5560795

大小:1.32 MB

页数:29页

时间:2017-11-16

正弦定理上课课件_第1页
正弦定理上课课件_第2页
正弦定理上课课件_第3页
正弦定理上课课件_第4页
正弦定理上课课件_第5页
资源描述:

《正弦定理上课课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章:解三角形1.1.1正弦定理1.问题的引入:.(1)在我国古代就有嫦娥奔月的神话故事.明月高悬,我们仰望夜空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?(2)设A,B两点在河的两岸,只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?AB我们这一节所学习的内容就是解决这些问题的有力工具.1.1.1正弦定理ACBcba想一想?问题(2)上述结论是否可推广到任意三角形?若成立,如何证明?(1)你有何结论?二、定理的猜想(1)当是锐角三角形时,结论是否还成立呢?D如图:作AB上的高是CD,根椐三角形的定义

2、,得到1.1.1正弦定理BACabcE(2)当是钝角三角形时,以上等式是否仍然成立?1.1.1正弦定理CAcbB图2由(1)(2)(3)知,结论成立.且仿(1)可得D(3)若三角形是钝角三角形,且角C是钝角如图2,此时也有交BC延长线于D,过点A作AD⊥BC,CAcbB图2==(2R为△ABC外接圆直径)=2R思考求证:证明:OC/cbaCBA作外接圆O,过B作直径BC/,连AC/,正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即含三角形的三边及三内角,由己知二角一边或二边一角可表示其它的边和角定理结构特征:1.1.1正弦定理剖析定

3、理、加深理解1、A+B+C=π2、大角对大边,大边对大角剖析定理、加深理解3、正弦定理可以解决三角形中的问题:①已知两角和一边,求其他角和边②已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角剖析定理、加深理解4、一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫解三角形剖析定理、加深理解5、正弦定理的变形形式6、正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化例1在已知,解三角形.通过例题你发现了什么一般性结论吗?1.1.1正弦定理3.定理的

4、应用举例变式:若将a=2改为c=2,结果如何?正弦定理应用一:已知两角和任意一边,求其余两边和一角如图:若测得a=48.1m,B=43°,C=69°,求AB。解:A=180°-(43°+69°)=68°aABsinAsinC=A.B..Ca在ABC中,由正弦定理得:a·sinCsinA∴AB=48.1·sin69°sin68°=≈48.4(m)学以致用定理的应用解:∵正弦定理应用一:已知两角和任意一边,求其余两边和一角例⒉在△ABC中,已知a=2,b=,A=45°,求B和c。变式1:在△ABC中,已知a=4,b=,A=45°,求B和c。变式

5、2:在△ABC中,已知a=,b=,A=45°,求B和c。正弦定理应用二:已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。(要注意可能有两解)点拨:已知两角和任意一边,求其余两边和一角,此时的解是唯一的.课堂练习:点拨:已知两边和其中一边的对角解三角形时,通常要用到三角形内角定理和定理或大边对大角定理等三角形有关性质.练习2、在ABC中,若a=2bsinA,则B=()A、B、C、D、或或练习1、在ABC中,若A:B:C=1:2:3,则a:b:c=()A、1:2:3B、3:2:1C、1::2D、2::1自我提高!A、等腰三角形B、

6、直角三角形C、等腰直角三角形D、不能确定CCB二种——平面几何法向量法定理应用方法课时小结二个——已知两角和一边(只有一解)已知两边和其中一边的对角(有一解,两解,无解)一个——正弦定理CcBbAasinsinsin==作业:P10习题1.1A组1.(1),2.(2)已知两边和其中一边的对角,求其他边和角时,三角形什么情况下有一解,二解,无解?课后思考下课!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。