基于PCA的人脸识别算法实现.doc

基于PCA的人脸识别算法实现.doc

ID:55571461

大小:2.12 MB

页数:72页

时间:2020-05-18

基于PCA的人脸识别算法实现.doc_第1页
基于PCA的人脸识别算法实现.doc_第2页
基于PCA的人脸识别算法实现.doc_第3页
基于PCA的人脸识别算法实现.doc_第4页
基于PCA的人脸识别算法实现.doc_第5页
资源描述:

《基于PCA的人脸识别算法实现.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实验报告题目:人脸识别学生姓名:万程程鲍智成李军专业:自动化班级:学号:181412指导老师:梁华刚完成日期:2015.9.25摘要随着科技的发展,人类社会的进步,传统身份识别由于容易遗失,容易被破解已不能起到身份识别作用。人们需要更加安全可靠的身份识别技术。而生物特征的独一无二,不易丢失和被复制的特性很好满足了身份识别的需要。同时随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。在生物特征识别领域,由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降

2、低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。本文研究的就是基于PCA的人脸识别算法的实现。本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了Essex人脸数据库。接下来是人脸图像预处理方法。由于Essex人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现

3、基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。【关键词】人脸识别PCA算法奇异值分解定理欧几里得距离ABSTRACTWiththedevelopmentofscienceandtechnology,theprogressofhumansociety,thetraditionalidentificationiseasytolose,easytobecrackedandithasnotplayanidentifiablerole.Peopleneedamoresecureandreliableidentificationtech

4、nology.Biometricisunique,easytoloseandreplicationcharacteristicsofgoodmeettheneedsoftheidentification.Withthedevelopmentofcomputerscienceandtechnologyandbiomedicalmakesuseofbiometricidentificationhasbecomepossible.Inthefieldofbiometricidentification,facerecognitionwiththeadvantagesofoperationisfa

5、standsimple,theresultsareintuitive,accurateandreliable,donotneedco-ordination,hasbecomethefocusofattention.Theprincipalcomponentanalysis(PCA)toextracthighdimensionalfaceimageofthemainelement,makingtheimagesareprocessedinlow-dimensionalspaceanditreducesthedifficultyofimageprocessing.PCAsolveseffec

6、tivelytheproblemofhighdimensionimagespaceandithasbecomeaveryimportanttheoryinfacerecognitionfield.Thispaperisinthiscontextofwritingfrom.InaccordancewiththefullrecognitionprocesstoanalyzetheperformanceofPCA-basedfacerecognitionalgorithm.Thefirsttousethemethodofaccesstocommonlyusedfaceimagesforface

7、images.InordertobetteranalysisisbasedontheperformanceofthePCAfacerecognitionsystemselectedEssexfacedatabase.Nextisthefaceimagepreprocessingmethods.Essexfaceimagequalityisbetter,andhavedonetheappropriatepretreatment,usi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。