巧用数1解几例.doc

巧用数1解几例.doc

ID:55565623

大小:156.00 KB

页数:5页

时间:2020-05-18

巧用数1解几例.doc_第1页
巧用数1解几例.doc_第2页
巧用数1解几例.doc_第3页
巧用数1解几例.doc_第4页
巧用数1解几例.doc_第5页
资源描述:

《巧用数1解几例.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、巧用数“1”解题几例——初中数学方法小结耿马一中字国华【关键词】初中数学、方法、巧用1、例题。【参考文献】初中《数学》(人教版)。对于常数“1”我们再熟悉不过。在解决有关数学问题时,如果对常数“1”能进行合理的应用,往往有出奇制胜的效果。一、趣题从前,有个农民,他有17只羊。临终前,他把羊分给三个儿子。他说:“长子得1/2,老二得1/3,老三得1/9,但不许把羊杀死。”三个儿子无法分配,去请教邻居,聪明的邻居带来了“1”只羊来,羊就有了18只。这样一来就很好分了:长子得9只,老二得6只,老三得2只,三个人一共分去17只,剩下的“1”只再由邻居带了回去。在这个故事中“1”发挥了相当奇妙的

2、作用。二、巧显“1”数“1”最突出的“性质”是“隐身”。如数、式、项的系数为“1”时,一般省略不写,而在有关计算时,易漏其存在,则需要将它显示出来。例1a3b-3a3b=()解:a3b-3a3b=1×a3b-3a3b=(1-3)a3b=-2a3b例2计算:(a-b)(a-b)3解:原式=(a-b)1(a-b)3=(a-b)1+3=(a-b)4三、巧乘“1”“1”的第二大性质是“1乘以任何数仍得这个数”,反之“任何数都可以写成它与1的形式。例1把常数3写成科学计数法的形式解:3=3×1=3×100例2计算:(2+1)(22+1)(24+1)(28+1)(216+1)解:原式=1×(2+1

3、)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=[(2-1)(2+1)](22+1)(24+1)(28+1)(216+1)=(22-12)(22+1)(24+1)(28+1)(216+1)=……=232-1例3已知x2+=2,求x-的值。解:∵x2+=2,∴x2-2+=0,即x2-2×1+=0∴x2-2·x·+()2=0∴(x-)2=0∴x-=0四、拆出“1”巧妙拆出“1”,并合理利用,有利巧解难题。例1已知++=3,且++≠0求证:x=a+b+c.证明:∵++=3即++=1+1+1∴(-1)+(-1)+(-

4、1)=0即++=0得(x-a-b-c)(++)=0又∵++≠0∴x=a+b+c.例2解分式方程+=+解:原分式方程变形为+=+整理得:1++1+=1++1+去分母得(x+5)(x+6)=(x+8)(x+9)即x2+11x+30=x2+17x+72解得:x=-7五、取倒数(巧除“1”)例1若=7,则=.解:∵=7∴x≠0∴(颠倒)即x+-1=∴x+=∴=x2++1=(x+)2-1=()2-1=即=。例2已知a、b、c为实数,,且,,。求:的值。解:由已知得:=3①,=4②,=5③①+②+③得:++=12即=12∴=(颠倒),即=六、取特值“1”例1设abcd=1则++=。分析:取a=b=

5、c=d=1,得知所求式子的值为1.例2当a>0,且-b>a+c时,求证:ax2+bx+c=0必有两个不同的实数根。证明:令y=ax2+bx+c∵-b>a+c∴x=1时,y=a+b+c<0∵a>0,∴抛物线开口向上。∴y=ax2+bx+c与x轴必有两个交点,即原方程ax2+bx+c=0必有两个不同的实数根。2012年6月

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。