欢迎来到天天文库
浏览记录
ID:55515694
大小:942.50 KB
页数:7页
时间:2020-05-15
《导数知识点总结与应用.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《导数及其应用》知识点总结一、导数的概念和几何意义1.函数的平均变化率:函数在区间上的平均变化率为:。2.导数的定义:设函数在区间上有定义,,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作。函数在处的导数的实质是在该点的瞬时变化率。3.求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则.4.导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出在x0处的导数,即为曲线在点处的切线的斜率;(2)
2、在已知切点坐标和切线斜率的条件下,求得切线方程为。当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为。5.导数的物理意义:质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度。二、导数的运算1.常见函数的导数:(1)(k,b为常数);(2)(C为常数);(3);(4);(5);(6);(7);(8)(α为常数);(9);(10);(11);(12);(13);(14)。2.函数的和、差、积、商的导数:(1);(2)(C为常数
3、);(3);(4)。3.简单复合函数的导数:若,则,即。三、导数的应用1.求函数的单调性:利用导数求函数单调性的基本方法:设函数在区间可导,(1)如果恒,则函数在区间上为增函数;(2)如果恒,则函数在区间上为减函数;(3)如果恒,则函数在区间上为常数函数。利用导数求函数单调性的基本步骤:①求函数的定义域;②求导数;③解不等式,解集在定义域的不间断区间为增区间;④解不等式,解集在定义域的不间断区间为减区间。反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值围):设函数在区间可导,(1)如果函数在区间上为增函数,则(其中使的值不构成区间);(2)如果函数在区间上为
4、减函数,则(其中使的值不构成区间);(3)如果函数在区间上为常数函数,则恒成立。2.求函数的极值:设函数在及其附近有定义,如果对附近的所有的点都有(或),则称是函数的极小值(或极大值)。可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数的定义域;(2)求导数;(3)求方程的全部实根,,顺次将定义域分成若干个小区间,并列表:x变化时,和值的变化情况:x…正负0正负0正负单调性单调性单调性(4)检查的符号并由表格判断极值。3.求函数的最大值与最小值:如果函数在定义域I存在,使得对任意的,总有,则称为函数在定义域上的最大值。函数在定义域的极值不一定唯一,但在定义
5、域的最值是唯一的。求函数在区间上的最大值和最小值的步骤:(1)求在区间上的极值;(2)将第一步中求得的极值与比较,得到在区间上的最大值与最小值。4.解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。的值域是时,不等式恒成立的充要条件是,即;不等式恒成立的充要条件是,即。的值域是时,不等式恒成立的充要条件是;不等式恒成立的充要条件是。(2)证明不等式可转化为证明,或利用函数的单调性,转化为证明。5.导数在实际生活中的应用:实际生活求解最大(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,
6、在解题时要加以说明。1.若不给自己设限,则人生中就没有限制你发挥的藩篱。2.若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3.花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4.岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也是一些色彩。你必须努力,当有一天蓦然回首
7、时,你的回忆里才会多一些色彩斑斓,少一些苍白无力。只有你自己才能把岁月描画成一幅难以忘怀的人生画卷。
此文档下载收益归作者所有