高一数学《用二分法求方程的近似解》导学案

高一数学《用二分法求方程的近似解》导学案

ID:5547878

大小:31.50 KB

页数:22页

时间:2017-12-18

高一数学《用二分法求方程的近似解》导学案_第1页
高一数学《用二分法求方程的近似解》导学案_第2页
高一数学《用二分法求方程的近似解》导学案_第3页
高一数学《用二分法求方程的近似解》导学案_第4页
高一数学《用二分法求方程的近似解》导学案_第5页
资源描述:

《高一数学《用二分法求方程的近似解》导学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高一数学《用二分法求方程的近似解》导学案高一数学《用二分法求方程的近似解》导学案教学目标知识与技能通过具体实例理解二分法的概念及其适用条,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观高一数学《用二分法求方程的近似解》导学案高一数学《用二分法求方程的近似解》导学案教学目标知识与技能通过具体实例理解二分法的概念及其适用条,了解二分法是求方程近似解的常用方法,从中体会函数与

2、方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观高一数学《用二分法求方程的近似解》导学案高一数学《用二分法求方程的近似解》导学案教学目标知识与技能通过具体实例理解二分法的概念及其适用条,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观高一数学《用二分法求方程的近似解》导学案高一数学

3、《用二分法求方程的近似解》导学案教学目标知识与技能通过具体实例理解二分法的概念及其适用条,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教材分析本节注重从

4、学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学

5、家对数学发展与人类明的贡献学情分析通过本节的学习,使学生在知识上学会用“二分法”求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板406中版中的“绘制新函数”功能画出基本初等函数的图象,掌握irsftExel软一些基本的操作教学媒体分析多媒体微机室、Authrare702中版、几何画板406中版、irsftExel、QBA

6、SI语言应用程序教学方法动手操作、分组讨论、合作交流、后实践教学环节设计流程图教学设计理念1构建共同基础,提供发展平台;2提供多样解法,适应个性选择;3倡导积极主动、勇于探索的学习方式;4注重提高学生的数学思维能力;发展学生的数学应用意识;6与时俱进地认识“双基”;7强调本质,注意适度形式化;8体现数学的化价值;9注重信息技术与数学程的整合;10建立合理、科学的评价体系教学过程与操作设计:环节教学内容设计师生双边互动信息技术应用中外历史上的方程求解 在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其

7、中璀璨的一座.虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).我国古代数学家已比较系统地解决了部分方程求解的问题,在《九算术》,北宋数学家贾宪的《黄帝九算法细草》,南宋数学家秦九韶的《数书九》中均有记载在十六世纪,已找到了三次和四次函数的求根公式,人们曾经希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果.1824年,挪威年轻数学家阿贝尔(

8、NHAbel,1802-1829)成功地证明了五次以上一般方程没有根式解.1828年,法国天才数学家伽罗瓦(EGalis,1811-1832)巧妙而简洁地证明了存在不能用开方运算求解的具体方程.人们认识到高于4次的代数方程不存在求根公式,因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的题.师:介绍中外历史上的方程求解问题,从高次代数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。