欢迎来到天天文库
浏览记录
ID:55469912
大小:339.50 KB
页数:16页
时间:2020-05-14
《IIR低通滤波器设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一.数字滤波器1.1数字滤波器的概念滤波器是指用来对输入信号进行滤波的硬件和软件。数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化过程中,使信号按预定的形式变化。数字滤波实质上是一种运算过程,实现对信号的运算处理。数字滤波器和模拟滤波器相比,因为信号的形式和实现滤波的方法不同,数字滤波器具有比模拟滤波器精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配等优点。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列
2、,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:(1-1)其中、分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性),是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。输入序列的频谱经过滤波后,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择,使得滤波后的满足设计的要求,这就是数字滤波器的滤波原理。1.2数字滤波器的分类按
3、照不同的分类方法,数字滤波器有许多种类,但总起来可以分成两大类:经典滤波器和现代滤波器。经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的频率成分占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波的目的。但是,如果信号和干扰的频谱相互重叠,则经典滤波器不能有效地滤除干扰,最大限度地恢复信号,这时就需要现代滤波器,例如维纳滤波器、卡尔曼滤波器、自适应滤波器等最佳滤波器。现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度地抑制干扰,同时最大限度地回复信号,从而达到最佳滤波的目的。2经典数
4、字滤波器从滤波特性上分类,可以分为:低通滤波器、高通滤波器、带通滤波器、带阻滤波器。图1各种理想滤波器的幅频特性数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。IIR数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型来实现,其差分方程为:(1-2)系统函数为:(1-3)设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减
5、系数。1.3IIR数字滤波器设计原理IIR数字滤波器是一种离散时间系统,其系统函数为3(1-4)假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。设计高通、带通、带阻等数字滤波器通常可以归纳为如图所示的两种常用方法。双线性变换频率冲激响应不变法模拟高通、带通和带阻数字原
6、型低通模拟原型低通数字高通、带通和带阻冲激响应不变法交换频率模拟原型低通模拟高通、带通和带阻方法1方法2交换双线性变换图2.数字滤波器设计的两种方法方法1:首先设计一个模拟原型低通滤波器,然后通过频率变换成所需要的模拟高通、带通或带阻滤波器,最后再使用冲激不变法或双线性变换成相应的数字高通、带通或带阻滤波器。方法2:先设计一个模拟原型低通滤波器,然后采用冲激响应不变法或双线性变换法将它转换成数字原型低通滤波器,最后通过频率变换把数字原型低通滤波器变换成所需要的数字高通、带通或带阻滤波器。4方法一的缺点是,由于产生混叠是真,因此
7、不能用冲激不变法来变换成高通或阻带滤波器,故一般采用第二种方法进行设计。二.切比雪夫滤波器目的:构造一个模拟低通滤波器。为了从模拟滤波器出发设计IIR数字滤波器,必须先设计一个满足技术指标的模拟滤波器,亦即要把数字滤波器的指标转换成模拟滤波器的指标,因此必须先设计对应的模拟原型滤波器。模拟滤波器的理论和设计方法己发展得相当成熟,且有一些典型的模拟滤波器供我们选择,如巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆(Cauer)滤波器、贝塞尔(Bessel)滤波器等,这些典型的滤波器各有特点。
8、这里介绍切比雪夫滤波器。切比雪夫滤波器特点:误差值在规定的频段上等波纹变化。巴特沃兹滤波器在通带内幅度特性是单调下降的,如果阶次一定,则在靠近截止处,幅度下降很多,或者说,为了使通带内的衰减足够小,需要的阶次N很高,为了克服这一缺点,采用切比雪夫多项式来逼近所希望的。切比雪夫
此文档下载收益归作者所有