数学(心得)之浅谈数学教学中学生探索能力的培养.doc

数学(心得)之浅谈数学教学中学生探索能力的培养.doc

ID:55440747

大小:25.50 KB

页数:4页

时间:2020-05-13

数学(心得)之浅谈数学教学中学生探索能力的培养.doc_第1页
数学(心得)之浅谈数学教学中学生探索能力的培养.doc_第2页
数学(心得)之浅谈数学教学中学生探索能力的培养.doc_第3页
数学(心得)之浅谈数学教学中学生探索能力的培养.doc_第4页
资源描述:

《数学(心得)之浅谈数学教学中学生探索能力的培养.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数学论文之浅谈数学教学中学生探索能力的培养培养学生的数学探索能力,是一项系统的工程。以下是我在教学实践中,培养学生数学探索能力的几点尝试,它包括培养兴趣、指导方法、鼓励质疑、鼓励创新等几个方面:  一、培养数学兴趣,激发学生的学习动机  兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:(1)加强基础知识的教学,使学生能接近数学,不产生畏难情绪。(2)重视数学的应用教学,提高学生对数学的认识,让学生充分感受到数学的作用和魅力,从而热爱数学。(3)引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与

2、包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。(4)鼓励攻克数学难题,使其在发现和创造中享受成功的喜悦,培养学生不断探索的欲望。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。  二、指导学习方法,让学生会学  学生掌握了学习方法,就能自己打开知识宝库的大门。因此,改进课堂教学,不但要帮助学生“学会”,更要指导学生“会学”。在教学中,我主要在读、议、思等几个方面给以指导:  1.教会学生“读”。这主要用来培养学生的数学观察力和归纳整理问题的能力。我们知道,数

3、学观察力是一种有目的、有选择并伴有注意的对数学材料的知觉能力。教会学生阅读,就是培养学生对数学材料的直观判断力,这种判断包括对数学材料的深层次、隐含的内部关系的实质和重点,逐步学会归纳整理,善于抓住重点以及围绕重点思考问题的方法。这在预习和课外自学中尤为重要。  2.鼓励学生“议”。在教学中鼓励学生大胆发言,对于那些容易混淆的概念,没有把握的结论、疑问,就积极引导学生议,真理是愈辩愈明,疑点是愈理愈清。对学生在议中出现的差错、不足,老师要耐心引导,帮助他们逐步得到正确的结论。  3.引导学生勤“思”。从某种意义上来说,思考尤为重要,它是学生对问题认识的深化和

4、提高的过程。养成反思的习惯,反思自己的思维过程,反思知识点和解题技巧,反思各种方法的优劣,反思各种知识的纵横联系。适时地组织引导学生展开想象:题设条件能否减弱?结论能否加强?问题能否推广等等。  三、鼓励质疑问难,敢于挑战权威     我们会经常遇到这样的情况:有的同学在解完一道题时,总是想问老师,或找些权威的书籍,来验证其结论正确,学生对权威的结论一般是不会质疑的。长此以往的结果,只能变成惟书本才正确了,谈不上创新。中学阶段,应该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为重要。如果真找出“

5、权威”的错误,对学生来讲也是莫大的鼓舞。例如:抛物线y2=2px的一条弦直线是y=2x+5,且弦的中点的横坐标是2,求此抛物线方程。某“权威答案”如下:     由y=2x+5,y2=2px得:4x2+(20-2p)x+25=0    ①     由x1+x2=(2p-20)/4,得p=12,故所求抛物线方程y2=24x     质疑:把P=12带入方程①,方程无实解,故本命题不成立。     教学中,对这样的新发现和巧思妙解及时褒奖,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方

6、面。  四、鼓励学习创新,让学生学有创见  在数学教学中,我们不仅要让学生学会学习,而且要鼓励创新,发展学生的学习能力,让学生创造地学习。  1.注意培养学生发现问题和提出问题的能力,老师要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。  2.引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。例如,已知点p(x,y)是圆(x-3)2+(y-4)2=1求y/x的最大值和最小

7、值。本题如用参数方程或直接利用点在圆上的性质,则解决较繁琐,若能打破常规,作恰当点拨,引导学生数形结合,设k=y/x,即求直线y=kx的斜率的最大值和最小值问题。再进一步引导,求(y+1)/(x+2)的最大值和最小值问题,可把定点分圆上、圆内、圆外几种情况进行讨论,则对求y/x之类的数的最大值和最小值问题的几何意义有更深的了解。     以上是我在培养学生探索能力方面的一些做法,当然,教无定法,在培养学生的同时,我们也要不断探索,以找出更好的提高学生数学素质的方法。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。