欢迎来到天天文库
浏览记录
ID:55430104
大小:59.50 KB
页数:3页
时间:2020-05-13
《八上第2课时变量与函数(二).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、变量与函数(二)教学目标1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.教学重点1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点认识函数、领会函数的意义.教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.活动一,看看它们中的变量
2、又怎样呢?问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.每当S取定一个值时,r随之确定一个值,它们的关系为r=.问题(2)中,我们可以根据题意,每确定一个矩形的一边长,即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,每当矩形长度x取定一个值时,面积S就随之确定一个值.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时
3、,另一个变量随之就有唯一确定的值与它对应.(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b叫
4、做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.例1一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指
5、出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?结论:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=
6、50-0.1x得:y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.关于函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。2.用数学式子表示的函数的自变量取值范围例.求下列函数中自变量x的取值范围(1)y=3x-l(2)y=2x2+7(3)y=(4)y=分析:用数学表示的函数,一般来说,自变量的取值范围是使
7、式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x+2)必须不等于0式子才有意义,对于第(4)题,(x-2)必须是非负数式子才有意义.我们在巩固函数意义理解认识及确立函数关系式基础上,又该学会如何确定自变量取值范围和求函数值的方法.知道了自变量取值范围的确定,不仅要考虑函数关系式的意义,而且还要注意问题的实际意义.Ⅲ.随堂练习Ⅳ.小结本节课我们通过回顾思考、观察讨论,认识了自变量、函数及函数值的概念,并通过两个活动加深了对函数意义的理解,学会了确立函数关系式、自变量取值范围的方法,会求函数值,提高了用函数解决
8、实际问题的能力.Ⅴ.作业1、习题11.
此文档下载收益归作者所有