欢迎来到天天文库
浏览记录
ID:55427735
大小:87.00 KB
页数:5页
时间:2020-05-12
《相交线、平行线.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相交线、平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。2.两条不同的直线,若它们只有一个公共点,就说它们相交。即,两条直线相交有且只有一个交点。3.垂直是相交的特殊情况。有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。4.在同一平面内,不相交的两条直线称为平行线。平行线中要理解平行公理,能熟练地找出“三线八角”图形中的同位角、内错角、同旁内角,并会运用与“三线八角”有关的平行线的判定定理和性质定理。5.利用平行公理及其推论证明或求解。二、例题精讲例1.
2、如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。解:∵ a∥b,∴ ∠3=∠4(两直线平行,内错角相等)∵ ∠1+∠3=∠2+∠4=180°(平角的定义)∴ ∠1=∠2(等式性质)则 3x+70=5x+22 解得x=24即∠1=142° ∴ ∠3=180°-∠1=38°图(1)评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。例2.已知:如图(2),AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数。解:∵AB∥EF∥CD∴∠B=∠BEF,∠DEF=∠D
3、(两直线平行,内错角相等)∵∠B+∠BED+∠D=192°(已知)即∠B+∠BEF+∠DEF+∠D=192°∴2(∠B+∠D)=192°(等量代换)则∠B+∠D=96°(等式性质)∵∠B-∠D=24°(已知)图(2)∴∠B=60°(等式性质)即∠BEF=60°(等量代换)∵EG平分∠BEF(已知)∴∠GEF=∠BEF=30°(角平分线定义)例3.如图(3),已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。解:过E作EF∥AB∵ AB∥CD(已知)∴ EF∥CD(平行公理)∴ ∠BEF=∠B=40°∠DEF=∠D=70°(两直线平行,内错角相等)∵
4、∠DEB=∠DEF-∠BEF∴ ∠DEB=∠D-∠B=30°评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。 图(3)例4.已知锐角三角形ABC的三边长为a,b,c,而ha,hb,hc分别为对应边上的高线长,求证:ha+hb+hc<a+b+c分析:对应边上的高看作垂线段,而邻边看作斜线段证明:由垂线段最短知,ha<c,hb<a,hc<b 以上三式相加得ha+hb+hc<a+b+c研究垂直关系应掌握好垂线的性质。1.以过一点有且只有一条直线垂直于已知直线。2.垂线段最短。 例5.如图(4),直线A
5、B与CD相交于O,EF^AB于F,GH^CD于H,求证EF与GH必相交。分析:欲证EF与GH相交,直接证很困难,可考虑用反证法。证明:假设EF与GH不相交。 ∵ EF、GH是两条不同的直线 ∴ EF∥GH ∵ EF^AB ∴ GH^AB 又因GH^CD 故AB∥CD(垂直于同一直线的两直线平行) 图(4) 这与已知AB和CD相交矛盾。 所以EF与GH不平行,即EF与GH必相交评注:本题应用结论:(1)垂直于同一条直线的两直线平行。(2)两条平行线中的一条直线垂直于第三条直线,那么另一条直线也平行于第三条直线;例6.平面上n条直线两两相交且无3条或3条以
6、上直线共点,有多少个不同交点?解:2条直线产生1个交点,第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点;第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点;…则 n条直线共有交点个数:1+2+3+…+(n-1)=n(n-1)评注:此题是平面上n条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。例7.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?解:6条不同的直线最多确定:5+4+3+2+1=15条直线,除去共线的3点中重合多算的2条直线,即
7、能确定的直线为15-2=13条。另法:3点所在的直线外的3点间最多能确定3条直线,这3点与直线上的3点最多有3×3=9条直线,加上3点所在的直线共有:3+9+1=13条评注:一般地,平面上n个点最多可确定直线的条数为:1+2+3+…+(n-1)=n(n-1)例8.10条直线两两相交,最多将平面分成多少块不同的区域? 解:2条直线最多将平面分成2+2=4个不同区域;3条直线中的第3条直线与另两条直线相交,最多有两个交点,此直线被这两点分成3段,每一段将它所在的区域一分为二,则区域增加3个,即最多分成2+2+3=7个不同区域;同理:4条直线最多分成2+2+3+4=
8、11个不同
此文档下载收益归作者所有