幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc

幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc

ID:55360249

大小:524.00 KB

页数:17页

时间:2020-05-11

幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc_第1页
幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc_第2页
幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc_第3页
幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc_第4页
幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc_第5页
资源描述:

《幂法-反幂法求解矩阵最大最小特征值及其对应的特征向量.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1.幂法简介:当矩阵A满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A需要满足的条件为:(1)(2)存在n个线性无关的特征向量,设为1.1计算过程:不全为0,则有可见,当越小时,收敛越快;且当k充分大时,有,对应的特征向量即是。2算法实现3matlab程序代码function[t,y]=lpowerA,x0,eps,N)%t为所求特征值,y是对应特征向量k=1;z=0;%z相当于y=x0./max(abs(x0));%规范化初始向量x=A*y;%迭代格式b=max(x);%b相当于ifabs(z-b)<

2、eps%判断第一次迭代后是否满足要求t=max(x);return;endwhileabs(z-b)>eps&&k

3、验证y是否是对应的特征向量。设置初始向量为x0=ones(15,1),结果显示如下可见,结果正确。得到了15阶Hilb矩阵的按模最大特征值和对应的特征向量。二.反幂法1.反幂法简介及其理论在工程计算中,可以利用反幂法计算矩阵按模最小特征值及其对应特征向量。其基本理论如下,与幂法基本相同:,可知,A和A-1的特征值互为倒数,求A按模最小特征值即求A-1的按模最大特征值,取倒数即为A的按模最小特征值所以算法基本相同,区别就是在计算2.算法实现3matlab程序代码function[s,y]=invpower(A,x0,eps,n)%s为按模最小特征值,y是对应特征向量k=1;r=0;%r相当于

4、y=x0./max(abs(x0));%规范化初始向量[L,U]=lu(A);z=Ly;x=Uz;u=max(x);s=1/u;%按模最小为A-1按模最大的倒数.ifabs(u-r)eps&&k

5、并与eig(A)的得到结果比较,再计算A*y-t*y,验证y是否是对应的特征向量。可见结果正确,然后利用此程序计算15阶Hilb矩阵,eig(A)的得到结果比较,再计算A*y-s*y,验证y是否是对应的特征向量。设置初始向量为x0=ones(15,1),结果显示如下可见,结果真确。得到了15阶Hilb矩阵的按模最大特征值和对应的特征向量。三.计算条件数矩阵A的条件数等于A的范数与A的逆的范数的乘积,即cond(A)=‖A‖·‖A^(-1)‖,对应矩阵的3种范数,可以定义3种条件数。函数cond(A,1)、cond(A)或cond(Ainf)是判断矩阵病态与否的一种度量,条件数越大表明矩阵的

6、病态程度越大.,而如果A为对称矩阵,如Hilb矩阵,的最大最小特征值,分别为A的最大最小特征值的平方。所以cond(A)为A的最大最小特征值得比值。对于本例中的15阶Hilb矩阵来说,利用上面计算结果得其条件数(选择第二种条件数)为:3.0934e+017;这与直接利用cond(A)得到的结果:2.5083e+017在同一数量级,再次表明了上述算得得最大最小特征值的正确性,同时又表明Hilb矩阵是病态矩阵。四.Aitken商加速法1.简介与原理同幂法和反幂法计算最大和最小特征值类似,如果计算最大特征值,则迭代格式为;计算最小特征值时,迭代格式为。2.算法实现计算按模最大特征值算法如下:类似

7、幂法和反幂法可以写出按模最小特征值算法,此处不再赘述。3.matlab程序代码function[r,y]=aitken(A,x0,eps,n)%r按模最大特征值,y为对应特征向量k=1;a0=0;%a相当于a1=1;%a1相当于r0=1;%相当于2中的y=x0./max(abs(x0));%规范化初始向量x=A*y;a2=max(abs(x));%a2相当于r=a0-(a1-a0)^2/(a2-2*a1+a0);%相当于

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。