欢迎来到天天文库
浏览记录
ID:55343785
大小:1.86 MB
页数:37页
时间:2020-05-14
《高二数学抛物线及其标准方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、抛物线及其标准方程从具体情境中抽象出抛物线的模型,掌握抛物线的定义、标准方程、几何图形,能够求出抛物线的方程,能够解决简单的实际问题..抛物线的定义和标准方程抛物线标准方程的推导过程重点难点目标复习回顾:我们知道,椭圆、双曲线的有共同的几何特征:都可以看作是,在平面内与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹.·MFl0<e<1(2)当e>1时,是双曲线;(1)当02、是上任意一点,过点作,线段FH的垂直平分线m交MH于点M,拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?提出问题:MF几何画板观察问题探究:当e=1时,即3、MF4、=5、MH6、,点M的轨迹是什么?探究?可以发现,点M随着H运动的过程中,始终有7、MF8、=9、MH10、,即点M与点F和定直线l的距离相等.点M生成的轨迹是曲线C的形状.(如图)M·Fl·e=1我们把这样的一条曲线叫做抛物线.M·Fl·e=1在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,直线l叫抛物线的准线11、12、MF13、=dd为M到l的距离准线焦点d一、抛物线的定义:解法一:以为轴,过点垂直于的直线为轴建立直角坐标系(如下图所示),则定点设动点点,由抛物线定义得:化简得:.M(X,y).xyOFl二、标准方程的推导解法二:以定点为原点,过点垂直于的直线为轴建立直角坐标系(如下图所示),则定点,的方程为设动点,由抛物线定义得化简得:二、标准方程的推导l解法三:以过F且垂直于l的直线为x轴,垂足为K.以F,K的中点O为坐标原点建立直角坐标系xoy.两边平方,整理得xKyoM(x,y)F二、标准方程的推导依题意得这就是所求的轨迹方程.14、三、标准方程把方程y2=2px(p>0)叫做抛物线的标准方程.其中p为正常数,表示焦点在x轴正半轴上.且p的几何意义是:焦点坐标是准线方程为:想一想:坐标系的建立还有没有其它方案也会使抛物线方程的形式简单?﹒yxo方案(1)﹒yxo方案(2)﹒yxo方案(3)﹒yxo方案(4)焦点到准线的距离y2=-2px(p>0)x2=2py(p>0)准线方程焦点坐标标准方程图形xFOylxFOylxFOylxFOyly2=2px(p>0)x2=-2py(p>0)P的意义:抛物线的焦点到准线的距离方程的特点:(1)左边是二次式,(2)15、右边是一次式;决定了焦点的位置.四.四种抛物线的对比P66思考:二次函数的图像为什么是抛物线?当a>0时与当a<0时,结论都为:例1(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标及准线方程(2)已知抛物线的焦点坐标是F(0,-2),求抛物线的标准方程(3)已知抛物线的准线方程为x=1,求抛物线的标准方程(4)求过点A(3,2)的抛物线的标准方程焦点F(,0)32准线:x=-32x2=-8yy2=-4xy2=x或x2=y4392沙场练兵2、根据下列条件写出抛物线的标准方程:(1)焦点坐标是(0,4);(2)准线方程16、是y=-4;(3)经过点A(-3,2);(4)焦点在直线4x-3y-12=0上;(5)焦点为椭圆x2+4y2=4的顶点.练习:P671、2、31、已知抛物线的标准方程是(1)y2=-6x,(2)x2=6y,求它的焦点坐标和准线方程.3、抛物线x2=4y上一点M的纵坐标为4,则点M与抛物线焦点的距离为.xyOHFM解3、求过点A(-3,2)的抛物线的标准方程..AOyx解:当焦点在y轴的正半轴上时,把A(-3,2)代入x2=2py,得p=当焦点在x轴的负半轴上时,把A(-3,2)代入y2=-2px,得p=∴抛物线的标准方程17、为x2=y或y2=x。能力提升2、求顶点在原点,焦点在x轴上的抛物线且截直线2x-y+1=0所得的弦长为的抛物线的方程.1、已知抛物线的顶点在原点,焦点在x轴上,抛物线上一点M(-3,m)到焦点的距离为5,求m的值、抛物线方程和准线方程.解:设所求的抛物线方程为y2=mx把y=2x+1代入y2=mx化简得:4x2+(4-m)x+1=0所以所求的抛物线方程为y2=12x或y2=-4x.注意:课堂练习:1、根据下列条件,写出抛物线的标准方程:(1)焦点是F(3,0);(2)准线方程是x=;(3)焦点到准线的距离是2。y2=118、2xy2=xy2=4x、y2=-4x、x2=4y或x2=-4y2、求下列抛物线的焦点坐标和准线方程:(1)y2=20x(2)x2=y(3)2y2+5x=0(4)x2+8y=0焦点坐标准线方程(1)(2)(3)(4)(5,0)x=-5(0,—)18y=-—188x=—5(-—,0)58(0,-2)y=2例3:一种卫星接
2、是上任意一点,过点作,线段FH的垂直平分线m交MH于点M,拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?提出问题:MF几何画板观察问题探究:当e=1时,即
3、MF
4、=
5、MH
6、,点M的轨迹是什么?探究?可以发现,点M随着H运动的过程中,始终有
7、MF
8、=
9、MH
10、,即点M与点F和定直线l的距离相等.点M生成的轨迹是曲线C的形状.(如图)M·Fl·e=1我们把这样的一条曲线叫做抛物线.M·Fl·e=1在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,直线l叫抛物线的准线
11、
12、MF
13、=dd为M到l的距离准线焦点d一、抛物线的定义:解法一:以为轴,过点垂直于的直线为轴建立直角坐标系(如下图所示),则定点设动点点,由抛物线定义得:化简得:.M(X,y).xyOFl二、标准方程的推导解法二:以定点为原点,过点垂直于的直线为轴建立直角坐标系(如下图所示),则定点,的方程为设动点,由抛物线定义得化简得:二、标准方程的推导l解法三:以过F且垂直于l的直线为x轴,垂足为K.以F,K的中点O为坐标原点建立直角坐标系xoy.两边平方,整理得xKyoM(x,y)F二、标准方程的推导依题意得这就是所求的轨迹方程.
14、三、标准方程把方程y2=2px(p>0)叫做抛物线的标准方程.其中p为正常数,表示焦点在x轴正半轴上.且p的几何意义是:焦点坐标是准线方程为:想一想:坐标系的建立还有没有其它方案也会使抛物线方程的形式简单?﹒yxo方案(1)﹒yxo方案(2)﹒yxo方案(3)﹒yxo方案(4)焦点到准线的距离y2=-2px(p>0)x2=2py(p>0)准线方程焦点坐标标准方程图形xFOylxFOylxFOylxFOyly2=2px(p>0)x2=-2py(p>0)P的意义:抛物线的焦点到准线的距离方程的特点:(1)左边是二次式,(2)
15、右边是一次式;决定了焦点的位置.四.四种抛物线的对比P66思考:二次函数的图像为什么是抛物线?当a>0时与当a<0时,结论都为:例1(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标及准线方程(2)已知抛物线的焦点坐标是F(0,-2),求抛物线的标准方程(3)已知抛物线的准线方程为x=1,求抛物线的标准方程(4)求过点A(3,2)的抛物线的标准方程焦点F(,0)32准线:x=-32x2=-8yy2=-4xy2=x或x2=y4392沙场练兵2、根据下列条件写出抛物线的标准方程:(1)焦点坐标是(0,4);(2)准线方程
16、是y=-4;(3)经过点A(-3,2);(4)焦点在直线4x-3y-12=0上;(5)焦点为椭圆x2+4y2=4的顶点.练习:P671、2、31、已知抛物线的标准方程是(1)y2=-6x,(2)x2=6y,求它的焦点坐标和准线方程.3、抛物线x2=4y上一点M的纵坐标为4,则点M与抛物线焦点的距离为.xyOHFM解3、求过点A(-3,2)的抛物线的标准方程..AOyx解:当焦点在y轴的正半轴上时,把A(-3,2)代入x2=2py,得p=当焦点在x轴的负半轴上时,把A(-3,2)代入y2=-2px,得p=∴抛物线的标准方程
17、为x2=y或y2=x。能力提升2、求顶点在原点,焦点在x轴上的抛物线且截直线2x-y+1=0所得的弦长为的抛物线的方程.1、已知抛物线的顶点在原点,焦点在x轴上,抛物线上一点M(-3,m)到焦点的距离为5,求m的值、抛物线方程和准线方程.解:设所求的抛物线方程为y2=mx把y=2x+1代入y2=mx化简得:4x2+(4-m)x+1=0所以所求的抛物线方程为y2=12x或y2=-4x.注意:课堂练习:1、根据下列条件,写出抛物线的标准方程:(1)焦点是F(3,0);(2)准线方程是x=;(3)焦点到准线的距离是2。y2=1
18、2xy2=xy2=4x、y2=-4x、x2=4y或x2=-4y2、求下列抛物线的焦点坐标和准线方程:(1)y2=20x(2)x2=y(3)2y2+5x=0(4)x2+8y=0焦点坐标准线方程(1)(2)(3)(4)(5,0)x=-5(0,—)18y=-—188x=—5(-—,0)58(0,-2)y=2例3:一种卫星接
此文档下载收益归作者所有