欢迎来到天天文库
浏览记录
ID:55247982
大小:1.83 MB
页数:34页
时间:2020-05-07
《一元二次方程讲义——绝对经典实用(0精解专练).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、一元二次方程基础知识1、一元二次方程方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如的一般形式,我们把这样的方程叫一元二次方程。其中分别叫做一元二次方程的二次项、一次项和常数项,a、b分别是二次项和一次项的系数。如:满足一般形式,分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。2.一元二次方程求根方法(1)直接开平方法形如的方程都可以用开平方的方法写成,求出它的解,这种解法称为直接开平方法。(2)
2、配方法通过配方将原方程转化为的方程,再用直接开平方法求解。配方:组成完全平方式的变形过程叫做配方。配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。(3)公式法求根公式:方程的求根公式步骤:1)把方程整理为一般形式:,确定a、b、c。2)计算式子的值。3)当时,把a、b和的值代入求根公式计算,就可以求出方程的解。(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样
3、的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。3、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到,显然只有当初中数学:..第34页共34页..:时,才能直接开平方得:.也就是说,一元二次方程只有当系数、、满足条件时才有实数根.这里叫做一元二次方程根的判别式.4、判别式与根的关系在实数范围内,一元二次方程的根由其系数、、确定,它的根的情况(是否有实数根)由确定.设一元二次方程为,其根的判别式为:则①方程有两个不相等的实数根.②方程有两个相等的实数根.③方程没有实数根.若,,为有理数,且为完
4、全平方式,则方程的解为有理根;若为完全平方式,同时是的整数倍,则方程的根为整数根.说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点.5、一元二次方程的根的判别式的应用一
5、元二次方程的根的判别式在以下方面有着广泛的应用:⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围;⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.6、韦达定理如果的两根是,,则,.(隐含的条件:)特别地,当一元二次方程的二次项系数为1时,设,是方程的两个根,则,.7、韦达定理的逆定理以两个数,为根的一元二次方程(二次项系数为1)是.初中数学:..第34页共34页..:一般地,如果有两个数,满足,,那么,必定是的两个根
6、.8、韦达定理与根的符号关系在的条件下,我们有如下结论:⑴当时,方程的两根必一正一负.若,则此方程的正根不小于负根的绝对值;若,则此方程的正根小于负根的绝对值.⑵当时,方程的两根同正或同负.若,则此方程的两根均为正根;若,则此方程的两根均为负根.更一般的结论是:若,是的两根(其中),且为实数,当时,一般地:①,②且,③且,特殊地:当时,上述就转化为有两异根、两正根、两负根的条件.其他有用结论:⑴若有理系数一元二次方程有一根,则必有一根(,为有理数).⑵若,则方程必有实数根.⑶若,方程不一定有实数根.⑷若,则必有一根.⑸若,则必有一
7、根.9、韦达定理的应用⑴已知方程的一个根,求另一个根以及确定方程参数的值;⑵已知方程,求关于方程的两根的代数式的值;⑶已知方程的两根,求作方程;⑷结合根的判别式,讨论根的符号特征;⑸逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑹利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的.一些考试中,往往利用这一点设置陷阱10、整数根问题对于一元二次方程的实根情况,可以用判别式来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么
8、就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程有整数根,那么必然同时满足以下条件:初中数学:..第34页共34页..:⑴为完全平方数;⑵或,其中为整数.以上两个条件必须同时满足,
此文档下载收益归作者所有