欢迎来到天天文库
浏览记录
ID:55219517
大小:926.50 KB
页数:15页
时间:2020-05-06
《专题14+概率问题易错点-名师揭秘2019年高考数学(理)命题热点全覆盖.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一.【学习目标】1.了解互斥事件,相互独立事件和条件概率的意义及其运算公式.2.理解独立重复试验的模型,会计算事件在n次独立重复试验中发生k次的概率.二.【知识要点】1.互斥事件与对立事件(1)互斥事件:若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生.(2)对立事件:若A∩B为不可能事件,而A∪B为必然事件,那么事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.练习2.下列说法正确的有( )①概率是
2、频率的稳定值,频率是概率的近似值;②一次试验中不同的基本事件不可能同时发生;③任意事件A发生的概率P(A)总满足0
3、动,且随着试验次数的不断增加,这种摆动幅度越来越小,这个常数叫做这个事件的概率.∴随机事件A的概率是频率的稳定值,频率是概率的近似值.∴①正确.∵基本事件的特点是任意两个基本事件是互斥的,∴一次试验中,不同的基本事件不可能同时发生.∴②正确.∵必然事件的概率为1,不可能事件的概率为0,随机事件的概率大于0,小于1,∴任意事件A发生的概率P(A)满足0≤P(A)≤1,∴③错误.若事件A的概率趋近于0,则事件A是小概率事件,∴④错误∴说法正确的有两个,故选:C.(二)事件的关系与运算例2.抛掷一枚质地均匀
4、的骰子,向上的一面出现任意一个点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=( )A.B.C.D.【答案】C【解析】根据P(A∪B)=P(A)+P(B)-P(AB),由此能求出结果.练习1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( )A.A⊆DB.B∩D=∅C.A∪C=DD.A∪C=B∪D【答案】D【解析】事件C
5、“恰有一弹击中飞机”包含两种情况:一种是第一枚击中第二枚没中,第二种是第一枚没中第二枚击中。事件D“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中。对于选项A,事件A包含在事件D中,故A正确。对于选项B,由于事件B,D不能同时发生,故B∩D=∅正确。对于选项C,由题意知正确。对于选项D,由于A∪C=D={至少有一弹击中飞机},不是必然事件;而B∪D为必然事件,所以A∪C≠B∪D.故D不正确。选D。练习2.下列说法正确的有( )①概率是频率的稳定值,频率是概率的近似值.②一次试验中
6、不同的基本事件不可能同时发生.③任意事件A发生的概率P(A)总满足0
7、害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.【答案】(I),因此企业应选方案二.练习2.从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是()A.至少2个白球,都是红球B.至少1个白球,至少1个红球C.至少2个白球,至多1个白球D.恰好1个白球,恰好2个红球【答案】A【解析】根据互斥事件、对立事件的定义对给出的四个选项分别进行分析、判断后可得正确的结论.【详解】选项A
8、中,“至少2个白球”包括“2个白球”和“2个白球和个红球”两种情况,“都是红球”即为“3个红球”.故这两个事件不可能同时发生,而这两个事件的和事件不是必然事件,故A正确.选项B中,“至少1个白球”包括“1个白球2个红球”、“2个白球和1个红球”、“3个白球”三种情况;“至少1个红球”包括“1个红球2个白球”、“2个红球和1个白球”、“3个红球”三种情况.所以这两个事件不互斥,所以B不正确.选项C中,“至少2个白球”包括“2个白球1个红球”、“3个白球”两
此文档下载收益归作者所有