2012年高考真题-数学理(浙江卷.doc

2012年高考真题-数学理(浙江卷.doc

ID:55208315

大小:204.50 KB

页数:5页

时间:2020-05-03

2012年高考真题-数学理(浙江卷.doc_第1页
2012年高考真题-数学理(浙江卷.doc_第2页
2012年高考真题-数学理(浙江卷.doc_第3页
2012年高考真题-数学理(浙江卷.doc_第4页
2012年高考真题-数学理(浙江卷.doc_第5页
资源描述:

《2012年高考真题-数学理(浙江卷.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合A={x

2、1<x<4},集合B={x

3、-2x-3≤0},则A∩(CRB)=A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.已知i是虚数单位,则=A.1-2i     B.2-i  C.2+iD.1+2i3.设a∈R,则“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行的A充分不必要条件   B

4、必要不充分条件C充分必要条件     D既不充分也不必要条件4.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5.设a,b是两个非零向量。A.若

5、a+b

6、=

7、a

8、-

9、b

10、,则a⊥bB.若a⊥b,则

11、a+b

12、=

13、a

14、-

15、b

16、C.若

17、a+b

18、=

19、a

20、-

21、b

22、,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则

23、a+b

24、=

25、a

26、-

27、b

28、6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不

29、同的取法共有A.60种   B.63种   C.65种  D.66种7.设S。是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是A.若d<0,则列数﹛Sn﹜有最大项B.若数列﹛Sn﹜有最大项,则d<0C.若数列﹛Sn﹜D.是递增数列,则对任意n∈Nn,均有Sn>08.如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别教育P,Q两点,线段PQ的垂直平分线与x轴交与点M,若

30、MF2

31、=

32、F1F2

33、,则C的离心率是A.BC.D.9.

34、设a大于0,b大于0.A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a>bC.若2a-2a=2b-3b,则a>bD.若2a-2a=ab-3b,则a<b10.已知矩形ABCD,AB=1,BC=。将△沿矩形的对角线BD所在的直线进行翻折,在翻折过程中。A.存在某个位置,使得直线AC与直线BD垂直.B.存在某个位置,使得直线AB与直线CD垂直.C.存在某个位置,使得直线AD与直线BC垂直.D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直非选择题部分(共100

35、分)二、填空题:本大题共7小题,每小题4分,共28分。11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3.12.若某程序框图如图所示,则该程序运行后输出的值是__________。13.设公比为q(q>0)的等比数列{an}的前n项和为Sn。若S2=3a2+2,S4=3a4+2,则q=______________。14.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+……+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=

36、______________。15.在△ABC中,M是BC的中点,AM=3,BC=10,则=________.16.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______。17.设a∈R,若x>0时均有[(a-1)x-1](x2-ax-1)≥0,则a=__________。三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。18.(本题满

37、分14分)在△ABC中,内角A,B,C的对边分别为a,b,c。已知cosA=,sinB=C。(1)求tanC的值;(2)若a=,求△ABC的面积。19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和。(1)求X的分布列;(2)求X的数学期望E(X)。20.(本题满分14分)如图,在四棱锥P-ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,P

38、A=,M,N分别为PB,PD的中点。(1)证明:MN∥平民啊ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值。21.(本题满分15分)如图,椭圆的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分。(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程。22.(本题满分14分)已知a>0,b∈R,函数f(x)=4ax2-2b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。