美丽而神奇的数学.doc

美丽而神奇的数学.doc

ID:54991583

大小:58.00 KB

页数:7页

时间:2020-04-25

美丽而神奇的数学.doc_第1页
美丽而神奇的数学.doc_第2页
美丽而神奇的数学.doc_第3页
美丽而神奇的数学.doc_第4页
美丽而神奇的数学.doc_第5页
资源描述:

《美丽而神奇的数学.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数字黑洞6174任意选一个四位数(数字不能全相同),把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。重复对新得到的数进行上述操作,7步以内必然会得到6174。例如,选择四位数6767:7766-6677=10899810-0189=96219621-1269=83528532-2358=61747641-1467=6174……6174这个“黑洞”就叫做Kaprekar常数。对于三位数,也有一个数字黑洞——495。3x+1问题从任意一个正整数开始,重复对其进行下面的操作:如

2、果这个数是偶数,把它除以2;如果这个数是奇数,则把它扩大到原来的3倍后再加1。你会发现,序列最终总会变成4,2,1,4,2,1,…的循环。例如,所选的数是67,根据上面的规则可以依次得到:67,202,101,304,152,76,38,19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1,...数学家们试了很多数,没有一个能逃脱“421陷阱”。但是,是否对于 所有 的数,序列最终总会变成4,2,1循环呢?这个问题可以说是一个“坑

3、”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从3x+1问题的各种别名看出来:3x+1问题又叫Collatz猜想、Syracuse问题、Kakutani问题、Hasse算法、Ulam问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做3x+1问题算了。直到现在,数学家们仍然没有证明,这个规律对于所有的数都成立。特殊两位数乘法的速算如果两个两位数的十位相同,个位数相加为10,那么你可以立

4、即说出这两个数的乘积。如果这两个数分别写作AB和AC,那么它们的乘积的前两位就是A和A+1的乘积,后两位就是B和C的乘积。比如,47和43的十位数相同,个位数之和为10,因而它们乘积的前两位就是4×(4+1)=20,后两位就是7×3=21。也就是说,47×43=2021。类似地,61×69=4209,86×84=7224,35×35=1225,等等。这个速算方法背后的原因是,(10x+y)(10x+(10-y))=100x(x+1)+y(10-y)对任意x和y都成立。幻方中的幻“方”一个“三阶幻方”是指

5、把数字1到9填入3×3的方格,使得每一行、每一列和两条对角线的三个数之和正好都相同。下图就是一个三阶幻方,每条直线上的三个数之和都等于15。大家或许都听说过幻方这玩意儿,但不知道幻方中的一些美妙的性质。例如,任意一个三阶幻方都满足,各行所组成的三位数的平方和,等于各行逆序所组成的三位数的平方和。对于上图中的三阶幻方,就有816 2 +357 2 +492 2 =618 2 +753 2 +294 2利用线性代数,我们可以证明这个结论。天然形成的幻方从1/19到18/19这18个分数的小数循环节长度都是1

6、8。把这18个循环节排成一个18×18的数字阵,恰好构成一个幻方——每一行、每一列和两条对角线上的数字之和都是81(注:严格意义上说它不算幻方,因为方阵中有相同数字)。196算法一个数正读反读都一样,我们就把它叫做“回文数”。随便选一个数,不断加上把它反过来写之后得到的数,直到得出一个回文数为止。例如,所选的数是67,两步就可以得到一个回文数484:67+76=143143+341=484把69变成一个回文数则需要四步:69+96=165165+561=726726+627=13531353+3531=

7、488489的“回文数之路”则特别长,要到第24步才会得到第一个回文数,8813200023188。大家或许会想,不断地“一正一反相加”,最后总能得到一个回文数,这当然不足为奇了。事实情况也确实是这样——对于 几乎 所有的数,按照规则不断加下去,迟早会出现回文数。不过,196却是一个相当引人注目的例外。数学家们已经用计算机算到了3亿多位数,都没有产生过一次回文数。从196出发,究竟能否加出回文数来?196究竟特殊在哪儿?这至今仍是个谜。Farey序列选取一个正整数n。把所有分母不超过n的 最简 分数找出

8、来,从小到大排序。这个分数序列就叫做Farey序列。例如,下面展示的就是n=7时的Farey序列。定理:在Farey序列中,对于任意两个相邻分数,先算出前者的分母乘以后者的分子,再算出前者的分子乘以后者的分母,则这两个乘积一定正好相差1!这个定理有从数论到图论的各种证明。甚至有一种证明方法巧妙地借助Pick定理,把它转换为了一个不证自明的几何问题!唯一的解经典数字谜题:用1到9组成一个九位数,使得这个数的第一位能被1整除,前两位组成的两位数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。