欢迎来到天天文库
浏览记录
ID:54857198
大小:1.07 MB
页数:3页
时间:2020-04-22
《【沪科版】七年级数学下册教案:10.3 平行线的性质.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、10.3 平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点) 一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:两直线平行,同位角相等【类型一】运用平行线的性质1计算如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为( )A.30°B.60°C.120°D.150°解析:根据两直线平行,同位角相等求出∠3,再根据邻补角的定义解答
2、.∵a∥b,∠1=60°,∴∠3=∠1=60°,∴∠2=180°-∠3=180°-60°=120°.故选C.【类型二】平行线判定方法与性质1的综合如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是( )A.35°B.70°C.90°D.110°解析:由∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°,故选D.方法总结:此题主要
3、考查了平行线的判定方法与性质1,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.探究点二:两直线平行,内错角相等如图,∠A=∠D,如果∠B=20°,那么∠C为( )A.40°B.20°C.60°D.70°解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20°,故选B.探究点三:两直线平行,同旁内角互补【类型一】运用平行线的性质3计算如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数
4、为( )A.55°B.50°C.45°D.40°解析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠ABC的度数,再根据角平分线的性质可得答案.∵CD∥AB,∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补).∵∠BCD=70°,∴∠ABC=180°-70°=110°.∵BD平分∠ABC,∴∠ABD=55°.故选A.方法总结:平行线是与角度大小紧密联系在一起的,由平行线能判断角度之间的大小关系;角平分线也是与角度大小联系在一起.在解题时要注意将两者结合起来考虑.【类型二】平行线判定方法与
5、性质3的综合如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为( )A.95°B.85°C.70°D.125°解析:根据对顶角相等得到∠5=∠1=85°,由同旁内角互补,两直线平行得到a∥b,再根据两直线平行,同位角相等即可得到结论.如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a∥b,∴∠3=∠4=125°.故选D.探究点四:平行线性质的运用【类型一】平行线性质的实际运用一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=______
6、__度.解析:过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.过B作BF∥AE,则CD∥BF∥AE.∴∠BCD+∠1=180°.又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为270.【类型二】平行线性质的探究应用如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC与∠DEF的数量
7、关系是相等或互补.理由如下:如图①,因为DE∥AB,所以∠ABC=∠DPC,又因为EF∥BC,所以∠DEF=∠DPC.所以∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°,又因为EF∥BC,所以∠DEF=∠DPB.所以∠ABC+∠DEF=180°.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.【类型三】平行线性质与判定中的探究型问题已知:如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠B
8、AE,∠CDE与∠AED之间的数量关系;(2)判定∠AFD与∠AED之间的数量关系.解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF
此文档下载收益归作者所有