备战2012数学高考的压轴题2

备战2012数学高考的压轴题2

ID:5474746

大小:1.54 MB

页数:29页

时间:2017-12-14

备战2012数学高考的压轴题2_第1页
备战2012数学高考的压轴题2_第2页
备战2012数学高考的压轴题2_第3页
备战2012数学高考的压轴题2_第4页
备战2012数学高考的压轴题2_第5页
资源描述:

《备战2012数学高考的压轴题2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥

2、x1-x2

3、对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f'(x)==,∵f(x)在[-1,1]上是增函数,∴f'(x)≥0对x∈[-1,1]恒

4、成立,即x2-ax-2≤0对x∈[-1,1]恒成立.①设(x)=x2-ax-2,方法一:(1)=1-a-2≤0,①-1≤a≤1,(-1)=1+a-2≤0.∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0∴A={a

5、-1≤a≤1}.方法二:≥0,<0,①或(-1)=1+a-2≤0(1)=1-a-2≤00≤a≤1或-1≤a≤0-1≤a≤1.∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0∴A={a

6、-1≤a≤1}.(Ⅱ)由=,得x2

7、-ax-2=0,∵△=a2+8>0-29-∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,∴从而

8、x1-x2

9、==.x1x2=-2,∵-1≤a≤1,∴

10、x1-x2

11、=≤3.要使不等式m2+tm+1≥

12、x1-x2

13、对任意a∈A及t∈[-1,1]恒成立,当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,即m2+tm-2≥0对任意t∈[-1,1]恒成立.②设g(t)=m2+tm-2=mt+(m2-2),方法一:g(-1)=m2-m-2≥0,②g(1)=m2+m-2≥0,m≥2或m≤-2.所以,存在实数m,使不等式m2+tm+1≥

14、

15、x1-x2

16、对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m

17、m≥2,或m≤-2}.方法二:当m=0时,②显然不成立;当m≠0时,m>0,m<0,②或g(-1)=m2-m-2≥0g(1)=m2+m-2≥0m≥2或m≤-2.所以,存在实数m,使不等式m2+tm+1≥

18、x1-x2

19、对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m

20、m≥2,或m≤-2}.2.(本小题满分12分)如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交于另一点Q.(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M-29-的轨迹方程;(Ⅱ)若直线l不过原

21、点且与x轴交于点S,与y轴交于点T,试求的取值范围.本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.由y=x2,①得y'=x.∴过点P的切线的斜率k切=x1,∴直线l的斜率kl=-=-,∴直线l的方程为y-x12=-(x-x1),方法一:联立①②消去y,得x2+x-x12-2=0.∵M是PQ的中点x0==-,∴y0=x12-(x0-x1).消去x1,得y0=x02++1(x0≠0),∴P

22、Q中点M的轨迹方程为y=x2++1(x≠0).方法二:由y1=x12,y2=x22,x0=,得y1-y2=x12-x22=(x1+x2)(x1-x2)=x0(x1-x2),-29-则x0==kl=-,∴x1=-,将上式代入②并整理,得y0=x02++1(x0≠0),∴PQ中点M的轨迹方程为y=x2++1(x≠0).(Ⅱ)设直线l:y=kx+b,依题意k≠0,b≠0,则T(0,b).分别过P、Q作PP'⊥x轴,QQ'⊥y轴,垂足分别为P'、Q',则.y=x2由消去x,得y2-2(k2+b)y+b2=0.③y=kx+by1+y2=2(k2+b),则y

23、1y2=b2.方法一:∴

24、b

25、()≥2

26、b

27、=2

28、b

29、=2.∵y1、y2可取一切不相等的正数,∴的取值范围是(2,+).方法二:∴=

30、b

31、=

32、b

33、.当b>0时,=b==+2>2;-29-当b<0时,=-b=.又由方程③有两个相异实根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,于是k2+2b>0,即k2>-2b.所以>=2.∵当b>0时,可取一切正数,∴的取值范围是(2,+).方法三:由P、Q、T三点共线得kTQ=KTP,即=.则x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).于是b==-x1x2.2

34、2∴==+=+≥2.∵可取一切不等于1的正数,∴的取值范围是(2,+).3.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。