资源描述:
《数学:二次函数复习课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.二次函数复习课二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。例1:(—,-—)12524x=—12一般式y=ax²+bx+c顶点式y=a(x-h)²+k二次函数的解析式:(a≠0)对称轴:直线x=h顶点:(h,k)二次函数的图象:是一条抛物线二次函数的图象的性质:开口方向;对称轴;顶点坐标;增减性;最值二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。例1:(—,-—)12524x=—12画二次函数的大致图象:①
2、画对称轴②确定顶点③确定与y轴的交点④确定与x轴的交点⑤确定与y轴交点关于对称轴对称的点⑥连线x=—12(—,-—)12524(0,-6)(-2,0)(3,0)0xy(1,-6)二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。例1:(—,-—)12524x=—12x=—12(—,-—)12524(0,-6)(-2,0)(3,0)0xy(1,-6)增减性:当时,y随x的增大而减小当时,y随x的增大而增大最值:当时,y有最值,是小函数值y的正负性:当时,y>0当时,y=0当时,y<0x<-2或x>3x=-2或x=3-
3、2b④2a+b=0⑤开口方向:向上a>0;向下a<0对称轴:在y轴右侧a、b异号;在y轴左侧a、b同号与y轴的交点:在y轴正半轴c>0;在y轴负半轴c<0与x轴的交点:两个不同b2-4ac>0;唯一b2-4ac=0;没有b2-4ac<0a+b+c由当x=1时的点的位置决定;a-b+c由当x=-1时的点的位置决定例2:y=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下
4、平移左右平移各种顶点式的二次函数的关系左加右减上加下减例3:将向左平移3个单位,再向下平移2个单位后,所得的抛物线的关系式是(0,0)(0,k)(h,0)(h,k)例4:抛物线关于x轴对称的抛物线解析式是解题思路:①将原抛物线写成顶点式y=a(x-h)2+k②写出顶点(h,k)③写出顶点(h,k)关于x轴的点的坐标(h,-k)则关于x轴对称的抛物线解析式是y=-a(x-h)2-k关于x轴对称:关于y轴对称:①将原抛物线写成顶点式y=a(x-h)2+k②写出顶点(h,k)③写出顶点(h,k)关于y轴的点的坐标(-h,k)则关于x轴对称的抛物线解析式是y=
5、a(x+h)2+k如图,在同一坐标系中,函数y=ax+b与y=ax2+bx(ab≠0)的图象只可能是()xyoABxyoCxyoDxyo例5:例6:施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM(1)直接写出点M及抛物线顶点P的坐标(2)求出这条抛物线的函数关系式(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D两点在抛物线上,B、C两点在地面OM上,为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少
6、?请你帮忙计算一下.解:(1)点M的坐标是(12,0),点P的坐标是(6,6)(2)设此抛物线解析式为y=a(x-6)2+6又因为它经过(0,0),则0=a(0-6)2+6例6:施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM(1)直接写出点M及抛物线顶点P的坐标(2)求出这条抛物线的函数关系式(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D两点在抛物线上,B、C两点在地面OM上,为了筹备材料,需求出“脚手架”三根木杆AB、AD
7、、DC的长度之和的最大值是多少?请你帮忙计算一下.(3)设点A的横坐标为m,则点A的纵坐标是∴AD=BC=12-2m,AB=CD=∴AB+AD+DC=当m=3时,即OB=3米时,3根木杆长度之和的最大值为15米.例6:施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM如果现有一辆宽4米,高4米的卡车准备要通过这个隧道,问它能顺利通过吗?解:当x=4时,即当这个隧道在中心两旁4米宽时的顶的高度达到了5米多,而车的高度只有4米,所以这两卡车能顺利通过.
8、2-2练习1、在y=-x2,y=2x2-+3,y=100-5x2,y=-2x2+5x3-3中有