欢迎来到天天文库
浏览记录
ID:54712754
大小:70.50 KB
页数:6页
时间:2020-04-20
《数学教学设计(105中沈伟).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《等腰三角形》教学设计重庆市第105中学沈伟初中数学教学设计 等腰三角形课型:新授课日期:6.12教材分析:1、本节内容是八年级上册第十二章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。2、等腰三角形是在《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊
2、结果的重要之处。3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活
3、的思维,提高学生解决实际问题的能力都有重要的意义。8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。学情分析:1、授课班级为平行班,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。教学目标:知识目标:等腰三角形的相关概念,两个定理的理解及应用。技能目标:理解对称思想的使用,学会运用对称思想观察
4、思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。情感目标:体会数学的对称美,体验团队精神,培养合作精神。教学中的重点、难点:重点:1、等腰三角形对称的概念。2、“等边对等角”的理解和使用。3、“三线合一”的理解和使用。难点:1、等腰三角形三线合一的具体应用。2、等腰三角形图形组合的观察,总结和分析。主要教学手段及相关准备:教学手段:1、使用导学法、讨论法。2、运用合作学习的方式,分组学习和讨论。3、运用多媒体辅助教学。4、调动学生动手操作,帮助理解。准备工作:1、多媒体课件片断,辅助难点突破。2、学生课前分小组预习,上课时按小组落座。3、学生自带剪刀,圆规
5、,直尺等工具。4、每人得到一张印有“长度为a的线段”的纸片。教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。教学步骤及说明学生活动教师活动教学目标教学说明预习相关概念及定理。观察并回答。学生同
6、步回答学生运用直尺或圆规和剪刀进行绘图和剪切。课题引入:让学生观察两把三角尺,从三角形分类思考“两把三角尺的形状除了角度不同外还有什么区别”在对学生思考结果的总结基础上,引入新课题。新授:1、等腰三角形的相关概念,腰,底边,顶角,底角。2、指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题。从直观图形上,回忆小学知识,体会等腰三角形。理解等腰三角形相关概念。深入体会,等腰三角形的构成和画三角形的方法。培养学生良好的学习习惯。在小学知识和第八章三角形知识的基础上,学生比较容易得到结论。由于学生
7、有相应的小学的知识和预习,基本概念的理解不成问题。由于三角形的形状不限,方法不限,学生绘制的结论也有所不同。学生观察并思考,然后讨论,然后积极回答。学生以小组形式进行操作和讨论然后努力向结果慢慢前进。学生对自己剪得的等腰三角形作操作,体会对称的思想。在讨论的基础上,回答更高层次的问题。学生观察,并且以小组竞赛的方式进行大范围的搜索和体验。学生观察,体验,领会新概念。3、第一个问题:观察所剪得的三角形形状是否相同,在满足条件的情况下,可以画几个不同类的等腰三角形。4、第二个问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和
此文档下载收益归作者所有