数学参赛课件 微积分基本定理(2).ppt

数学参赛课件 微积分基本定理(2).ppt

ID:54605248

大小:673.50 KB

页数:10页

时间:2020-05-03

数学参赛课件  微积分基本定理(2).ppt_第1页
数学参赛课件  微积分基本定理(2).ppt_第2页
数学参赛课件  微积分基本定理(2).ppt_第3页
数学参赛课件  微积分基本定理(2).ppt_第4页
数学参赛课件  微积分基本定理(2).ppt_第5页
资源描述:

《数学参赛课件 微积分基本定理(2).ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、微积分基本定理(2)参赛选手:****微积分基本定理:设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),则,这个结论叫微积分基本定理(fundamentaltheoremofcalculus),又叫牛顿-莱布尼茨公式(Newton-LeibnizFormula).说明:牛顿-莱布尼茨公式提供了计算定积分的简便的基本方法,即求定积分的值,只要求出被积函数f(x)的一个原函数F(x),然后计算原函数在区间[a,b]上的增量F(b)–F(a)即可.该公式把计算定积分归结为求原函数的问题。定积分公式问题:通过计算下列

2、定积分,进一步说明其定积分的几何意义。通过计算结果能发现什么结论?试利用曲边梯形的面积表示发现的结论.我们发现:(1)定积分的值可取正值也可取负值,还可以是0;(2)当曲边梯形位于x轴上方时,定积分的值取正值;(3)当曲边梯形位于x轴下方时,定积分的值取负值;(4)当曲边梯形位于x轴上方的面积等于位于x轴下方的面积时,定积分的值为0.得到定积分的几何意义:曲边梯形面积的代数和。例3:计算其中解12F(x)=2xY=5微积分与其他函数知识综合举例:练一练:已知f(x)=ax²+bx+c,且f(-1)=2,f’(0)=0,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。