中考专题一-旋转问题题型方法归纳

中考专题一-旋转问题题型方法归纳

ID:5448923

大小:881.00 KB

页数:7页

时间:2017-12-12

中考专题一-旋转问题题型方法归纳_第1页
中考专题一-旋转问题题型方法归纳_第2页
中考专题一-旋转问题题型方法归纳_第3页
中考专题一-旋转问题题型方法归纳_第4页
中考专题一-旋转问题题型方法归纳_第5页
资源描述:

《中考专题一-旋转问题题型方法归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;CABNM(第1题)(3)探究:△ABC的最大面积?2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°,∠B=60°

2、,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.3、(2009年北京市)在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P为射线C

3、D上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.分析:此题是综合开放题-------已知条件、问题结论、解题依据、解题方法这四个要素中缺少两个或两个以上,条件需要补充,结论需要探究,解题方法、思考方

4、向有待搜寻。解决此类问题,一般要经过观察、实验、分析、比较、类比、归纳、推断等探究活动来寻找解题途径。可从简单、特殊的情况入手,由此获得启发和感悟,进而找到解决问题的正确途径,是我们研究数学问题,进行猜想和证明的思维方法。华罗庚说:善于退,足够地退,退到最原始而不失重要性的地方,这是学好数学的一个诀窍。提示:(1)运用三角形全等,(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。4、(2009黑龙江大兴安岭)已知:在中,,动点绕的顶点逆时针旋转,且,连结.过、的中点、作直线,直线与直线、分别相交于点、.(1)如图1,当点

5、旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明).图2图3图1(N)(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明.7一、角的旋转5、(2009年中山)(1)如图1,圆心接中,,、为的半径,于点,于点求证:阴影部分四边形的面积是的面积的.(2)如图2,若保持角度不变,求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的.(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点

6、、分别在线段和上运动,且保持不变.设求与的函数关系式;(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当取最小值时,判断的形状,并说明理由.ADCBPMQ60°提示:第(3)①问,两种情形----PM∥AB,PM∥CD第(3)②问,求出y最小值为3,此时x=PC=2,点P到BC中点,PM⊥BC.6、(2009年重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连

7、接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.6题图yxDBCAEEO提示:第(3)问,△PGC为等腰三角形按哪两边相

8、等分类讨论,求出点P坐标,再求点Q坐标。二、三角形的旋转7、(2009年邵阳市)如图,将Rt△

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。