二次根式-典型分类练习题.docx

二次根式-典型分类练习题.docx

ID:54420220

大小:223.68 KB

页数:13页

时间:2020-04-16

二次根式-典型分类练习题.docx_第1页
二次根式-典型分类练习题.docx_第2页
二次根式-典型分类练习题.docx_第3页
二次根式-典型分类练习题.docx_第4页
二次根式-典型分类练习题.docx_第5页
资源描述:

《二次根式-典型分类练习题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.《二次根式》分类练习题知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1)1,2)5,3)x22,4)4,5)(1)2,6)1a,7)a22a1,53其中是二次根式的是(填序号).举一反三:1、下列各式中,一定是二次根式的是()2A、aB、10C、a1D、a12、在a、a2b、x1、1x2、3中是二次根式的个数有______个【例2】若式子1.[来源:学*科*网Z*X*X*K]x有意义,则x的取值范围是3举一反三:1、使代数式x3有意义的x的取值范围是()x4A、x>3B、x≥3C

2、、x>4D、x≥3且x≠422、使代数式x2x1有意义的x的取值范围是3、如果代数式m1P(m,n)的位置在()有意义,那么,直角坐标系中点mnA、第一象限B、第二象限C、第三象限D、第四象限word.【例3】若y=x5+5x+2009,则x+y=a(a≥0),x50x5,y=2009,则x+y=2014解题思路:式子5x,0举一反三:1、若x11x(xy)2,则x-y的值为()A.-1B.1C.2D.32、若x、y都是实数,且y=2x332x4,求xy的值3、当a取什么值时,代数式2a11取值最小,并求出这个最小值。已知a是5整数部分,b是5的小数部分,求1的值。ab2若3的整数部

3、分是a,小数部分是b,则3ab。17的整数部分为x,小数部分为x21若y,求y的值.知识点二:二次根式的性质【知识要点】1.非负性:a(a0)是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.(a)2aa(0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a(a)2(a0)3.a2

4、

5、a(a0)注意:(1)字母不一定是正数.aa(a0)(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.word.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4.公式a2

6、

7、a(a0

8、)与(a)2aa(0的区别与联系aa(a0))(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)(a)2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和(a)2的运算结果都是非负的.【典型例题】【例4】若a2b3c420,则abc.举一反三:1、若m3(n1)20,则mn的值为。2、已知x,y为实数,且x13y220,则xy的值为()A.3B.–3C.1D.–13、已知直角三角形两边x、y的长满足|x2-4|+y25y6=0,则第三边长为______.、若a1与a20054b2b4互为相反数,则ab_____________。(公式(a)2a(a0)的运用)

9、【例5】化简:a1(a3)2的结果为()A、4—2aB、0C、2a—4D、4举一反三:2421、在实数范围内分解因式:x3=;m4m4=x49__________,x222x2__________2、化简:3313word.3、已知直角三角形的两直角边分别为2和5,则斜边长为(公式a2aa(a0)的应用)a(a0)【例6】已知x2,则化简x24x4的结果是A、x2B、x2C、x2D、2x举一反三:1、根式(3)2的值是()A.-3B.3或-3C.3D.92、已知a<0,那么│a2-2a│可化简为()A.-aB.aC.-3aD.3a3、若2a322a2,则a3等于()A.52aB.12

10、aC.2a5D.2a14、若a-3<0,则化简a26a94a的结果是()(A)-1(B)1(C)2a-7(D)7-2a5、化简4x24x12x32得()(A)2(B)4x4(C)-2(D)4x4a22a16、当a<l且a≠0时,化简a2a=.、已知a0,化简求值:4(a1)24(a1)27aa【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│+(ab)2的结果等于()baoa1012word.A.-2bB.2bC.-2aD.2a举一反三:实数a在数轴上的位置如图所示:化简:a1(a2)2______.【例8】化简1xx28x16的结果是2x-5,则x的取值

11、范围是()(A)x为任意实数(B)≤≤4(C)x≥1(D)≤11xx举一反三:若代数式(2a)2(a4)2的值是常数2,则a的取值范围是()A.a≥4B.a≤2C.2≤a≤4D.a2或a4【例9】如果aa22a11,那么a的取值范围是()A.a=0B.a=1C.a=0或a=1D.a≤1举一反三:1、如果aa26a93成立,那么实数a的取值范围是()A.a0B.a3;C.a3;D.a32、若(x3)2x30,则x的取值范围是()(A)x3(B)x3(C)x3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。