欢迎来到天天文库
浏览记录
ID:34327024
大小:336.00 KB
页数:11页
时间:2019-03-05
《【7A版】《二次根式》典型分类练习题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、7A版优质实用文档《二次根式》分类练习题知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1),其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()A、B、C、D、2、在、、、、中是二次根式的个数有______个【例2】若式子有意义,则G的取值范围是.[来源:学G科G网ZGGGGGK]举一反三:1、使代数式有意义的G的取值范围是()A、G>3B、G≥3C、G>4D、G≥3
2、且G≠42、使代数式有意义的G的取值范围是3、如果代数式117A版优质实用文档7A版优质实用文档有意义,那么,直角坐标系中点P(m,n)的位置在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限【例3】若y=++20GG,则G+y=解题思路:式子(a≥0),,y=20GG,则G+y=20GG举一反三:1、若,则G-y的值为()A.-1B.1C.2D.32、若G、y都是实数,且y=,求Gy的值3、当取什么值时,代数式取值最小,并求出这个最小值。已知a是整数部分,b是的小数部分,求的值。若的整数部分
3、是a,小数部分是b,则。若的整数部分为G,小数部分为y,求的值.知识点二:二次根式的性质【知识要点】1.非负性:是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2..注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:3.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.117A版优质实用文档7A版优质实用文档(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4.公式与的区别与
4、联系(1)表示求一个数的平方的算术根,a的范围是一切实数.(2)表示一个数的算术平方根的平方,a的范围是非负数.(3)和的运算结果都是非负的.【典型例题】【例4】若则.举一反三:1、若,则的值为。2、已知为实数,且,则的值为()A.3B.–3C.1D.–13、已知直角三角形两边G、y的长满足|G2-4|+=0,则第三边长为______.4、若与互为相反数,则。(公式的运用)【例5】化简:的结果为()A、4—2aB、0C、2a—4D、4举一反三:1、在实数范围内分解因式:=;=2、化简:3、已知直角三角形的两直角边
5、分别为和,则斜边长为117A版优质实用文档7A版优质实用文档(公式的应用)【例6】已知,则化简的结果是A、B、C、D、举一反三:1、根式的值是()A.-3B.3或-3C.3 D.92、已知a<0,那么│-2a│可化简为()A.-aB.aC.-3aD.3a3、若,则等于()A.B.C.D.4、若a-3<0,则化简的结果是()(A)-1(B)1(C)2a-7(D)7-2a5、化简得()(A) 2 (B) (C)-2 (D)6、当a<l且a≠0时,化简=.7、已知,化简求值:【例7】如果表示a,b两个实数的点在数轴上
6、的位置如图所示,那么化简│a-b│+的结果等于()A.-2bB.2bC.-2aD.2a举一反三:实数在数轴上的位置如图所示:化简:.【例8】化简的结果是2G-5,则G的取值范围是()(A)G为任意实数(B)≤G≤4(C)G≥1(D)G≤1举一反三:若代数式的值是常数,则117A版优质实用文档7A版优质实用文档的取值范围是( )A.B.C.D.或【例9】如果,那么a的取值范围是()A.a=0B.a=1C.a=0或a=1D.a≤1举一反三:1、如果成立,那么实数a的取值范围是()2、若,则的取值范围是()(A)(B
7、)(C)(D)【例10】化简二次根式的结果是(A)(B)(C)(D)1、把二次根式化简,正确的结果是()A.B.C.D.2、把根号外的因式移到根号内:当>0时,=;=。知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。117A版优质实用文档7A版优质实用
8、文档【典型例题】【例11】在根式1),最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)解题思路:掌握最简二次根式的条件。举一反三:1、中的最简二次根式是。2、下列根式中,不是最简二次根式的是()A.B.C.D.3、下列根式不是最简二次根式的是( )A. B. C. D.4、下列各式中哪些是最简二次根式,哪些不是?为什么?(1)(
此文档下载收益归作者所有