欢迎来到天天文库
浏览记录
ID:54376854
大小:492.25 KB
页数:17页
时间:2020-05-01
《具有随机保费的二维扰动稀疏风险模型的破产概率.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、应用概率统计第三十卷ChineseJournalofAppliedProbability第四期2014年8月andStatisticsVo1.30No.4Aug.2014RuinProbabilityforaTwo-DimensionalPerturbedRiskModelwithThinningDependenceandStochasticPremiumsZHOUYUN(SchoolofStatisticsandManagement,ShanghaiUniversityofFinanceandEconomics,Shanghai,200433)ZHUDONGJIN(SchoolofM0t
2、hemnticsandComputerScie佗ces,AnhuiNormnlUniersity,Wuhu,241000)AbstractThismansuscriptfocusesonakindoftwo—dimensionalriskmodelwithstochasticpremiumincomeandthemodelallowsfordependencebetweenpremiumsandclaims.ByLaplacetransform-S,weprovethatthemodelproposedinthispapercanbereducedintoakindofriskmodelw
3、ithstochasticpremiumincomes,andthepremiumincomeisindependentoftheclaimprocess.Whentheindividualclaimsarethe“light—tailed”case.anupperboundforruinprobabilityisderivedbymartingaleapproach.Whentheclaimsbelongtoakindofheavy-taileddistribution,theasymp—toticestimationforruinprobabilityisgivenwhentheini
4、tialsurplustendstoinfinity.Keywords:Two-dimensionalriskmodel,ruinprobability,thinningdependence,upperbound,asymptoticestimation.AMSSubjectClassification:60K05,62P05,90A46.§1.IntroductionClassicalriskmodelisspecifiedasN(t)u(t)=u+ct一∑,i=1whereU0istheinitialcapitalofaninsurer;C>0istherateofpremiuminc
5、ome,N(t)representsthetotalnumberoftheclaimsuptotimet;denotestheamountoftheithclaim.{Ⅳ(t),t0)isaPoissonprocesswithparameter>0,seeAsmussenTheresearchwassupportedbyNationalNaturalScienceFoundationofChina(11201006),HumanitiesandSocialScienceProjectofMinistryofEducation(12YJC910012),theCollegesandUnive
6、rsitiesofAnhuiProvinceNaturalScienceFoundationGrandProject(KJ2012ZD01).ReceivedApril3,2014.RevisedMay18,2014.doi:10.3969/j.issn.1001—4268.2014.04.006第四期周昀祝东进:具有随机保费的二维扰动稀疏风险模型的破产概率399andAlbrecher(2010)orGrandell(1991)forcomprehensiveintroduction.Intheclassicalmodel,thepremiumrateisaconstantandthep
7、remiumprocessisalinearfunctionoftime.Inpastdecade,moreandmoreliteraturepayattentiontothemodelwithstochasticpremiumincomes,seeCaiandGeng(2007),Yaoeta1.(2008),XiangandWei(2011)andreferencesthereinforexample.Inreali
此文档下载收益归作者所有