多元统计分析-因子分析

多元统计分析-因子分析

ID:5424191

大小:1.05 MB

页数:62页

时间:2017-11-12

多元统计分析-因子分析_第1页
多元统计分析-因子分析_第2页
多元统计分析-因子分析_第3页
多元统计分析-因子分析_第4页
多元统计分析-因子分析_第5页
资源描述:

《多元统计分析-因子分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1第四章因子分析2第一节因子分析的基本思想3因子分析的基本思想因子分析是根据相关矩阵内部的依赖关系,把一些具有错综复杂关系的变量综合为数量较少的几个因子。通过不同因子来分析决定某些变量的本质及其分类的一种统计方法。简单地说,就是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,不同组的变量相关性较低。每组变量代表一个基本结构,这个基本结构称为因子。4例如某机关对其职员就以下6个方面进行考核,这6个方面是职员的词汇、阅读、写作能力,以及数字、代数、微积分的运算能力。而这6个方面可归结为职员的语文能力和数学能力两个方面。5例如某公司与48名

2、申请工作的人进行面谈,然后就申请人十五个方面进行打分,这十五个方面分别是:申请书的形式、外貌、学术能力、讨人喜欢的能力、自信心、洞察力、诚实、推销能力、经验、工作积极性、抱负、理解能力、潜力、入围公司的强烈程度、适应性。这15个方面可归结为应聘者的外露能力、讨人喜欢的能力、经验、专业能力这4个方面。6因子分析(factoranalysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而

3、假想变量是不可观测的潜在变量,称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。7但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。8注意:因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子

4、有非常明确的实际意义。主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分。因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。9第二节因子分析模型一、数学模型设个变量,如果表示为10称为公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:即不相关;11即互不相关,方差为1。12即互不相关,方差不一定相等,。13用矩阵的表达方式141、因子载荷aij的统计意义因子载荷是第i个变量与第j个公

5、共因子的相关系数模型为(载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关性。绝对值越大,相关的密切程度越高。根据公共因子的模型性质,有三、因子载荷矩阵中的几个统计特征15因子载荷不是惟一的且满足因子模型的条件设T为一个p×p的正交矩阵,令A*=AT,,则模型可以表示为162、变量共同度的统计意义统计意义:两边求方差所有的公共因子和特殊因子对变量的贡献为1。如果非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。定义:变量的共同度是因子载荷矩阵的第i行的元素的平方和。记为173、公共因子方差贡献的

6、统计意义因子载荷矩阵中各列元素的平方和称为所有的对的方差贡献和。衡量的相对重要性。18第三节因子载荷矩阵的估计方法设随机向量的均值为,协方差为,为的特征根,为对应的标准化特征向量,则主成分分析法19上式给出的表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的p-m项的贡献,有20上式有一个假定,模型中的特殊因子是不重要的,因而从的分解中忽略了特殊因子的方差。2122例假定某地固定资产投资率,通货膨胀率,失业率,相关系数矩阵为试用主成分分析法求因子分析模型。23特征根为:24可取前两个因

7、子F1和F2为公共因子,第一公因子F1物价就业因子,对X的贡献率为51.67%。第二公因子F2为投资因子,对X的贡献为28.33%。共同度分别为1,0.706,0.706。25第四节因子旋转(正交变换)因子分析的数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的含义,以便进行进一步的分析。如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。目的是使因子载荷阵的结构简化,使载荷矩阵每列或行的元素平方值向0和1两极分化。主要的正交旋转法有方差最大法和四次方最大法。

8、(一)为什么要旋转因子26百米跑成绩跳远成绩铅球成绩跳高成绩400米跑成绩百米跨栏铁饼成绩撑杆跳远成绩标枪成绩1500米跑成绩奥运会十项全能运动项目得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。