2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx

2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx

ID:54150564

大小:1.04 MB

页数:27页

时间:2020-04-13

2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx_第1页
2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx_第2页
2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx_第3页
2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx_第4页
2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx_第5页
资源描述:

《2020年中考数学基础题型提分讲练专题12锐角三角函数(含解析).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题12锐角三角函数必考点1锐角三角函数:在直角三角形ABC中,∠C是直角,1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作说明:由定义可以看出tanA·cotA=l(或写成)5、锐角三角函数:锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数说明:锐角三角函数都不能取负值。0<sinA<l;0<cosA<;l6、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它

2、的余角的正弦值。即sinA=cos(90°一A)=cosB;cosA=sin(90°一A)=sinB7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。即tanA=cot(90°一A)=cotB;cotA=tan(90°-A)=tanB说明:式中的90°一A=B。8、三角函数值的变化规律(1)当角度在0°—90°间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)(2)当角度在0°—90°间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。9、同角三角函数关系公式(1);(2);(3)t

3、anA=10.一些特殊角的三角函数值【典例1】(2019·浙江中考真题)如图,矩形的对角线交于点O,已知则下列结论错误的是()A.B.C.D.【答案】C【解析】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴

4、在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.【举一反三】1.(2019·浙江中考模拟)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.B.3C.D.2【答案】D【解析】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.2.(2019·湖北中考真题)如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为()A.B.C.D.【答案】D【解析】如图,过作于,则,

5、AC==5..故选D.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键.3.(2019·广东中考真题)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若,则次斜坡的水平距离AC为()A.75mB.50mC.30mD.12m【答案】A【解析】解:因为,又BC=30,所以,,解得:AC=75m,所以,故选A.【点睛】本题考查了正切三角函数,熟练掌握是解题的关键.必考点2解直角三角形及其应用由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。若直角三角形ABC中,∠C=90°,那么A、B、C,

6、a,b,c中除∠C=90°外,其余5个元素之间有关系:(l);(2)∠A十∠B=90°;(3);;;所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知数。【典例2】(2019·山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【答案】D【解析】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为

7、(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.【举一反三】1.(2019·湖南中考真题)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.nmileB.60nmileC.120nmileD.nmile【答案】D【解析】过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×.在R

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。