资源描述:
《(水平渐近线)horizontal asymptote》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、HorizontalasymptoteTheHighSchoolAttachedtoNorthwestNormalUniversity王志强WangZhiqiang6thNovember2012Whenxapproachespositiveornegativeinfinity,thelimitsofrationalfunctionsasfollowing:、ReviewExample1:Example2:Ⅱ、Introducetothenewclass1.Observethefollowingfourfunctions,thendrawingt
2、hegraphsofthem::f(x)=1/x.gsp:f(x)=(1/x)+1.gsp:f(x)=x/x-1.gsp:f(x)=1/(x-1).gspExample4:Findthehorizontalasymptoteofthebelowfunction:Thehorizontalasymptotetellsus,roughly,wherethegraphwillgowhenxisreally,reallybig.SoWe'lllookatsomeverybigvaluesforx,somevaluesofxveryfarfromtheor
3、igin.Fromtheabovegraphs,weknowthelinesy=0andy=1arethehorizontalasymptotesofrationalfunctions.y=(x+2)/(x^2+1).gspAswecanseeinthetableofvaluesandthegraph,thehorizontalasymptoteisthex-axis.horizontalasymptote:y=0(thex-axis)Remark:Intheaboveexercise,thedegreeonthedenominator(name
4、ly,2)wasbiggerthanthedegreeonthenumerator(namely,1),andthehorizontalasymptotewasy=0(thex-axis).Thispropertyisalwaystrue.2.Whatisthedefinitionoftheasymptote?WhenacurveonavertexMalongthecurveinfiniteawayfromorigin,ifMtoastraightlinedistanceapproaches0,thenthislineiscalledasympt
5、oteofthecurve.当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于0,那么这条直线称为这条曲线的渐近线。Example5:Findthehorizontalasymptoteofthefollowingfunction:Thisfunctionhasdegree-2polynomialstopandbottom;inparticular,thedegreesarethesameinthenumeratorandthedenominator.Question1:Whathappensifthedegreesarethe
6、sameinthenumeratoranddenominator?f(x)=(2x^2-11)/(x^+9).gspForbigvaluesofx,thegraphisveryclosetoy=2.So,wehaveTheliney=aisahorizontalasymptoteofthegraphofy=f(x)ifQuestion2:Whathappensifthedegreesarelargernumeratorthandenominator?Example6:Observethefollowingfunction,whatisthehor
7、izontalasymptoteofthisfunction?Thisfunctionhasdegree-3polynomialstopanddegree-2polynomialsbottom;thedegreesarelargernumeratorthandenominator.f(x)=(2x^3+4x^2-9)/(3-x^).gspFromtheabovegraph,weknowthisfunctionhasnohorizontalasymptoteandthelimitoff(x)asfollowing:Sothefunctionf(x)
8、hasnohorizontalasymptote.Example7:Observethefollowingfunction,whatis