高中数学优秀讲义微专题40 利用函数性质与图像解不等式.doc

高中数学优秀讲义微专题40 利用函数性质与图像解不等式.doc

ID:53876102

大小:1.01 MB

页数:16页

时间:2020-04-10

高中数学优秀讲义微专题40  利用函数性质与图像解不等式.doc_第1页
高中数学优秀讲义微专题40  利用函数性质与图像解不等式.doc_第2页
高中数学优秀讲义微专题40  利用函数性质与图像解不等式.doc_第3页
高中数学优秀讲义微专题40  利用函数性质与图像解不等式.doc_第4页
高中数学优秀讲义微专题40  利用函数性质与图像解不等式.doc_第5页
资源描述:

《高中数学优秀讲义微专题40 利用函数性质与图像解不等式.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、微专题40利用函数性质与图像解不等式高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算。相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大。本章节以一些典型例题来说明处理这类问题的常规思路。一、基础知识:(一)构造函数解不等式1、函数单调性的作用:在单调递增,则(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设在上连续且单调递增,,则时,;时,(单调性与零点配合可确定零点左右点的函数值的符号)3、

2、导数运算法则:(1)(2)4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点。所以处理这类问题要将条件与结论结合着分析。在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图像只是辅助手段。所以如果能够确定构造函数的单调性,猜出函数的零点。那么问题便易于解决了。(二)利用函数性质与图像解不等式:1、轴对称与单调性:此类问题的实质就是自变量与

3、轴距离大小与其函数值大小的等价关系。通常可作草图帮助观察。例如:的对称轴为,且在但增。则可以作出草图(不比关心单调增的情况是否符合,不会影响结论),得到:距离越近,点的函数值越小。从而得到函数值与自变量的等价关系2、图像与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如,其中的图像均可作出。再由可知的图像在图像的下方。按图像找到符合条件的范围即可。二、典型例题:例1:定义在上的可导函数满足:,,则的解集为()A.B.C.D.思路:本题并没有的解析

4、式,所以只能考虑利用函数的单调性来解不等式。由条件可得,进而联想到有可能是通过导数的乘除运算法则所得,再结合所解不等式,发现,刚好与条件联系起来,故设,则在上单调递减。,所以的解集为答案:C小炼有话说:(1)在解题过程中目标要明确:既然不能用传统方法解不等式,则要靠函数单调性,进而目标为构造函数并求单调性,要确定单调性则要分析所构造函数的导函数的符号(2)此题构造的关键点有二:一是轮流求导的特点,进而联想到导数乘除法运算,二是所求不等式所给予的“暗示”。所以解此类题目一定要让条件与结论“对上话”(3)体会条件的作用:提供零点以便配合单调性求解例2:函数的定义域为,

5、,对任意的,有,则的解集是;思路:所解不等式化为,令,则由可得(这也是为何构造的原因),在上单调递增。考虑,答案:例3:设定义在上的函数的导函数为,且,则不等式的解集为_________思路:由可得原函数(注意由导函数反求原函数时要带个常数),再由可得,(看到函数解析式的反应:定义域?奇偶性?)显然是奇函数,且在单调递增。进而不等式可利用单调性解出的范围。,所以答案:小炼有话说:(1)本题尽管求出的的解析式,但由于靠解析式所解得不等式过于复杂,所以依然选择利用单调性(2)要掌握一些能直接判断单调性与奇偶性的方法,常见的判断方法如下:奇偶性:①奇+奇→奇②偶+偶→偶

6、③奇×奇→偶④奇×偶→奇⑤偶×偶→偶单调性:①增+增→增②减+减→减③增×(-1)→减④1/增→减(仅在函数值恒正或恒负时成立)(3)本题求解有一个重要细节:由于定义在上,所以要保证均在上(4)要培养一个习惯:拿到函数,首先看定义域,其次看函数的三个性质是否有能直接判断的(尤其奇偶性),再根据条件分析。例4:函数是定义在上的奇函数,,当时,有成立,则不等式的解集是()A.B.C.D.思路:,令,则在单调递增,因为是奇函数,所以可判断为偶函数。另一方面,的解集与的解集相同,进而只需求出的解集。,由增函数可得时,,由对称性可知时,答案:D例5:若函数是定义在上的偶函数

7、,且在区间上是单调增函数.如果实数满足时,那么的取值范围是.思路:根据函数为偶函数,而与互为相反数的特点可化简所求不等式:,由偶函数与单调性作草图可得:距离轴约近,函数值越小,所以可得,解出的范围即可解:所解不等式等价于:为偶函数为偶函数,且上单增答案:小炼有话说:遇到单调性与对称轴已知的函数,可以作草图并得到距离对称轴远近与函数值的大小的等价关系。例6:已知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为____________思路:考虑条件能够提供什么,为偶函数的图像关于轴对称的图像关于轴对称;,由轮流求导的特点联想到导数的乘除运算法则(极有

8、可能是除法

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。