欢迎来到天天文库
浏览记录
ID:53863107
大小:250.00 KB
页数:9页
时间:2020-04-09
《微电子习题答案(第2单元)模板.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二单元习题解答1.SiO2膜网络结构特点是什么?氧和杂质在SiO2网络结构中的作用和用途是什么?对SiO2膜性能有哪些影响?二氧化硅的基本结构单元为Si-O四面体网络状结构,四面体中心为硅原子,四个顶角上为氧原子。对SiO2网络在结构上具备“长程无序、短程有序”的一类固态无定形体或玻璃体。半导体工艺中形成和利用的都是这种无定形的玻璃态SiO2。氧在SiO2网络中起桥联氧原子或非桥联氧原子作用,桥联氧原子的数目越多,网络结合越紧密,反之则越疏松。在连接两个Si-O四面体之间的氧原子掺入SiO2中的杂质,按它们在SiO2网络中所处的位置来说,
2、基本上可以有两类:替代(位)式杂质或间隙式杂质。取代Si-O四面体中Si原子位置的杂质为替代(位)式杂质。这类杂质主要是ⅢA,ⅤA元素,如B、P等,这类杂质的特点是离子半径与Si原子的半径相接近或更小,在网络结构中能替代或占据Si原子位置,亦称为网络形成杂质。由于它们的价电子数往往和硅不同,所以当其取代硅原子位置后,会使网络的结构和性质发生变化。如杂质磷进入二氧化硅构成的薄膜称为磷硅玻璃,记为PSG;杂质硼进入二氧化硅构成的薄膜称为硼硅玻璃,记为BSG。当它们替代硅原子的位置后,其配位数将发生改变。具有较大离子半径的杂质进入SiO2网络只能
3、占据网络中间隙孔(洞)位置,成为网络变形(改变)杂质,如Na、K、Ca、Ba、Pb等碱金属、碱土金属原子多是这类杂质。当网络改变杂质的氧化物进入SiO2后,将被电离并把氧离子交给网络,使网络产生更多的非桥联氧离子来代替原来的桥联氧离子,引起非桥联氧离子浓度增大而形成更多的孔洞,降低网络结构强度,降低熔点,以及引起其它性能变化。2.在SiO2系统中存在哪几种电荷?他们对器件性能有些什么影响?工艺上如何降低他们的密度?在二氧化硅层中存在着与制备工艺有关的正电荷。在SiO2内和SiO2-Si界面上有四种类型的电荷:可动离子电荷:Qm;氧化层固定电
4、荷:Qf;界面陷阱电荷:Qit;氧化层陷阱电荷:QOt。这些正电荷将引起硅/二氧化硅界面p-硅的反型层,以及MOS器件阈值电压不稳定等现象,应尽量避免。(1)可动离子电荷(Mobileioniccharge)Qm主要是Na+、K+、H+等荷正电的碱金属离子,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质,电荷密度在1010~1012/cm2。其中主要是Na+,因为在人体与环境中大量存在Na+,热氧化时容易发生Na+沾污。Na+离子沾污往往是在SiO2层中造成正电荷的一个主要来源。这种正电荷将影响到SiO2层下的硅的表面势,从而,Si
5、O2层中Na+的运动及其数量的变化都将影响到器件的性能。进入氧化层中的Na+数量依赖于氧化过程中的清洁度。现在工艺水平已经能较好地控制Na+的沾污,保障MOS晶体管阈值电压VT的稳定。9存在于SiO2中的Na+,即使在低于200℃的温度下在氧化层中也具有很高的扩散系数。同时由于Na以离子的形态存在,其迁移(transport)能力因氧化层中存在电场而显著提高。为了降低Na+的沾污,可以在工艺过程中采取一些预防措施,包括:①使用含氯的氧化工艺;②用氯周期性地清洗管道、炉管和相关的容器;③使用超纯净的化学物质;④保证气体在传输过程的清洁。另外保
6、证栅材料(通常是多晶硅)不受沾污也是很重要的。使用PSG和BPSG玻璃钝化可动离子,可以降低可动离子的影响。因为这些玻璃体能捕获可动离子。用等离子淀积氮化硅来封闭已经完成的芯片,氮化硅起阻挡层的作用,可以防止Na+、水汽等有害物的渗透。(2)固定离子电荷(FixedOxideCharge)Qf,通常是带正电,但是在某些情况下也可能带负电,它的极性不随表面势和时间的变化而变化,所以叫它固定电荷。这种电荷是指位于距离Si-SiO2界面3nm的氧化层范围内的正电荷,又称界面电荷,是由氧化层中的缺陷引起的,电荷密度在l010~1012/cm-2。然
7、而在超薄氧化层(<3.0nm)中,电荷离界面更近,或者是分布于整个氧化层之中。固定离子电荷的来源普遍认为是氧化层中过剩的硅离子,或者说是氧化层中的氧空位。由于氧离子带负电,氧空位具有正电中心的作用,所以氧化层中的固定电荷带正电。固定氧化层电荷的能级在硅的禁带以外,但在SiO2禁带中。硅衬底晶向、氧化条件和退火温度的适当选择,可以使固定正电荷控制在较低的密度。同时降低氧化时氧的分压,也可减小过剩Si+的数量,有助于减小固定正电荷密度。另外,含氯氧化工艺也能降低固定正电荷的密度。(3)界面陷阱电荷(Interfacetrappedcharge)
8、Qit,位于SiO2/Si界面上,电荷密度在1010/cm-2左右,是由能量处于硅禁带中、可以与价带或导带方便交换电荷的那些陷阱能级或电荷状态引起的。那些陷阱能级可以是施主或受主
此文档下载收益归作者所有