欢迎来到天天文库
浏览记录
ID:53851191
大小:237.94 KB
页数:6页
时间:2020-04-08
《九年级数学上册第25章概率初步检测题无解答新人教版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十五章检测题 时间:120分钟 满分:120分 一、选择题(每小题3分,共30分)1.(2016·徐州)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°2.(2016·广州)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A.B.C.D.3.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十
2、字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为( )A.B.C.D.4.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子的枚数为( )A.60B.50C.40D.305.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A.B.C.D.6.(2016·台州)质地均匀的骰
3、子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数的和小于27.如图,A,B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是( )A.B.C.D.8.(2016·湖州)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算
4、x-4
5、,则其结果恰为2的概率是( )A.B.C.D.9.(2016·绵阳)有5张看上去无差别的卡片,上面分别写着1,2,3,4,5
6、,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )A.B.C.D.10.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p,再随机摸出另一个小球,其数记为q,则满足关于x的方程x2-px+q=0有实数根的概率是( )A.B.C.D.二、填空题(每小题3分,共24分)11.在一个不透明的袋子中装有除颜色外其他均相同的4个红球,3个白球,2个绿球,则摸出的球不是绿球的概率是________.12.(2016·贵阳)现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正
7、面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.13.(2016·南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是________.第13题图 第15题图14.(2016·黔东南州)在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是________.15
8、.(2016·聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是________.16.(2016·重庆)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________.18.从-1,1,2这三个数字中随机抽取一个数,记为a,那么
9、,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为________.三、解答题(共66分)19.(7分)投掷一枚普通的正方体骰子24次.(1)你认为下列四种说法哪几种是正确的?①出现1点的概率等于出现3点的概率;②投掷24次,2点一定会出现4次;③投掷前默念几次“出现4点”,投掷结果出现4点的可能性就会加大;④连续投掷6次,出现的点数之和不可能等于37.(2)求出现5点的概率;(
此文档下载收益归作者所有