数列极限的几种求法.doc

数列极限的几种求法.doc

ID:53584482

大小:198.48 KB

页数:4页

时间:2020-04-04

数列极限的几种求法.doc_第1页
数列极限的几种求法.doc_第2页
数列极限的几种求法.doc_第3页
数列极限的几种求法.doc_第4页
资源描述:

《数列极限的几种求法.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数列极限的几种求法一、定义法:数列极限的定义如下:设{}是一个数列,若存在确定的数a,对>0N>0使当n>N时,都有<则称数列{}收敛于a,记为=a,否则称数列{}不收敛(或称数列{}发散)。故可从最原始的定义出发计算数列极限。例1、用-N方法求解:令=t+1则t>0n+1=>0取则当时,有=1二、单调有界法:首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。证明:不妨设{}为有上界的递增数列。由确界原理,数列{}有上界,记为{}。以下证明a就是{}的极限。事实上,>0,按上确界的定义,存在数列{}中某一项,使得又由{}的递增性,当时有,这

2、就证得。同理可证有下界的递减数列必有极限,且其极限即为它的下确界。例2、证明数列收敛,并求其极限。证:,易见数列{}是递增的。现用数学归纳法来证明{}有上界。显然。假设,则有,从而对一切n有,即{}有上界。由单调有界定理,数列{}有极限,记为a。由于,对上式两边取极限得,即有(a+1)(a-2)=0,解得a=-1或a=2由数列极限的保不等式性,a=-1是不可能的,故有三、运用两边夹法:迫敛法:(两边夹法)设收敛数列{},都以a为极限,数列满足:存在正数当时有(1)则数列收敛且证:由分别存在正数与使得当时有(2)当时有(3)取则当时不等式(1),(2),(3)同时成

3、立即有从而有即证所得结果。例3、求解:(1)=1由(1)式及两边夹法则=1。四、先求和再求极限:例4、求极限解:五、先用放缩法再求极限:例5、求极限解:记则又由两边夹法则=六、用施笃兹公式:首先我们介绍并证明施笃兹公式:施笃兹公式(stolz):设数列{}单调递增趋向于,(1)(可以为无穷)则例6、设求:解:由施笃兹公式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。