微积分 高等数学 英文练习题以及答案(1)

微积分 高等数学 英文练习题以及答案(1)

ID:5358067

大小:729.50 KB

页数:9页

时间:2017-12-08

微积分 高等数学 英文练习题以及答案(1)_第1页
微积分 高等数学 英文练习题以及答案(1)_第2页
微积分 高等数学 英文练习题以及答案(1)_第3页
微积分 高等数学 英文练习题以及答案(1)_第4页
微积分 高等数学 英文练习题以及答案(1)_第5页
资源描述:

《微积分 高等数学 英文练习题以及答案(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Xi’anJiaotong-LiverpoolUniversitySubgroupNameIDNo.1Preliminaries:Functions3.Provethattheproductoftwoevenfunctionsiseven,the1.Findthenaturaldomainsofthefollowingfunctions:productoftwooddfunctionsiseven;theproductofaneven1functionandanoddfunctionisodd.(1)yx21;1xProve:设fx(),()x为偶函数,g

2、xhx(),()为奇函数,i.e.自然定义域为使得函数有意义的点,即:f(x)fx(),(x)();xg(x)gxhx(),()hx(){:xxR,1x20andx10}令:Fx()fx()(),xFx()gxhx()(),Fx()fxgx()(),即{:xxRx,1,x1}(1,1)(1,).123则有:F(x)f(x)(x)fx()()xFx(),1125.(1)Letfx(2)x2x3.Findfx(2).F(x)g(xh)(x)gx()(hx())

3、gxhx()()Fx(),221(2)y.F33(x)f(xg)(x)fx()(gx())fxgx()()Fx().解:令xt2,则xt2,有:[x1]得证。22ft()(t2)2(t2)3t2t3自然定义域为:从而{:xxRx,[1]0}fx(2)(x2)222(x2)3x6x11i.e.(,1)[0,).法二:fx(2)fx((4)2)(x4)22(x4)32xx6114.Sketchthegraphofthefollowingfunctions

4、:2.Arethefollowingfunctionsfandidentical?Why?(1)yxsgn(cos);22(1)fx()1,()xsinxcosx;习题选解法三:相同.因为两个函数的定义域相同并且定义域中的任何一点对Page1:1.(2):22Findthenaturaldomainofthefunctionfx(2)x2x3(x2)2(x2)3应的函数值也相同。y10x11[x1]0(,1)[0,)[x1]2从而fx()x2x3Page1:4.(1):Sketchthegraphoft

5、hefunctionysgn(cosx)xycosxysgn(cosx)(2)Givenfxsin1cos.Findfx(cos).y22223032x(2)fx()1,()xsecxtanx22x22令:usin,则2(2)yxx.不同。因为定义域不同。x22Page1:4.(2):cosxu12sin12,从而Sketchthegraphofthefunctionyx[x]2yyy[x]yx222Ofu1(12)u22u2(1u)x21O1234x故:yyx[

6、x]2221O123xf(cos)2(1cosxx)2sinxXi’anJiaotong-LiverpoolUniversitySubgroupNameIDNo.2Xi’anJiaotong-LiverpoolUniversitySubgroupNameIDNo.3Exercise1-2LimitsofSequences2.Single-choicequestions:(2)For0.01,findNsothatwhennN,the1.Observethebehaviorofthegeneraltermofeachofthenxainequal

7、ityholds.followingsequencesasnincreasesinfinitely,determinethe(1)limn2nn1sequencesthathavelimitsandwriteoutthelimitifitexists:1341(A)0(B)(C)1(D).[A]解:同上题只要0.01,即nn2200或15。(1)xnn(a1);222n2a极限存在,为0。32n(2)limn23nn1113(2)x(1);(A)0(B)(C)1(D).[D]nn22极限存在,为0。x3.Iftheseque

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。