基于深度强化学习的flappy-bird.docx

基于深度强化学习的flappy-bird.docx

ID:53449781

大小:1.01 MB

页数:14页

时间:2020-04-03

基于深度强化学习的flappy-bird.docx_第1页
基于深度强化学习的flappy-bird.docx_第2页
基于深度强化学习的flappy-bird.docx_第3页
基于深度强化学习的flappy-bird.docx_第4页
基于深度强化学习的flappy-bird.docx_第5页
资源描述:

《基于深度强化学习的flappy-bird.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、SHANGHAIJIAOTONGUNIVERSITYProjectTitle:PlayingtheGameofFlappyBirdwithDeepReinforcementLearningGroupNumber:G-07GroupMembers:WangWenqing116032910080GaoXiaoning116032910032QianChen116032910073Contents1Introduction12DeepQ-learningNetwork22.1Q-learning22.1.1ReinforcementLearn

2、ingProblem22.1.2Q-learningFormulation[6]32.2DeepQ-learningNetwork42.3InputPre-processing52.4ExperienceReplayandStability52.5DQNArchitectureandAlgorithm63Experiments73.1ParametersSettings73.2ResultsAnalysis94Conclusion115References12IPlayingtheGameofFlappyBirdwithDeepRein

3、forcementLearningPlayingtheGameofFlappyBirdwithDeepReinforcementLearningAbstractLettingmachineplaygameshasbeenoneofthepopulartopicsinAItoday.Usinggametheoryandsearchalgorithmstoplaygamesrequiresspecificdomainknowledge,lackingscalability.Inthisproject,weutilizeaconvolutio

4、nalneuralnetworktorepresenttheenvironmentofgames,updatingitsparameterswithQ-learning,areinforcementlearningalgorithm.WecallthisoverallalgorithmasdeepreinforcementlearningorDeepQ-learningNetwork(DQN).Moreover,weonlyusetherawimagesofthegameofflappybirdastheinputofDQN,which

5、guaranteesthescalabilityforothergames.Aftertrainingwithsometricks,DQNcangreatlyoutperformhumanbeings.1IntroductionFlappybirdisapopulargameintheworldrecentyears.Thegoalofplayersisguidingthebirdonscreentopassthegapconstructedbytwopipesbytappingscreen.Iftheplayertapthescree

6、n,thebirdwilljumpup,andiftheplayerdonothing,thebirdwillfalldownataconstantrate.Thegamewillbeoverwhenthebirdcrashonpipesorground,whilethescoreswillbeaddedonewhenthebirdpassthroughthegap.InFigure1,therearethreedifferentstateofbird.Figure1(a)representsthenormalflightstate,(

7、b)representsthecrashstate,(c)representsthepassingstate.(a)(b)(c)Figure1:(a)normalflightstate(b)crashstate(c)passingstateOurgoalinthispaperistodesignanagenttoplayFlappybirdautomaticallywiththesameinputcomparingtohumanplayer,whichmeansthatweuserawimagesandrewardstoteachour

8、agenttolearnhowtoplaythisgame.Inspiredby[1],weproposeadeepreinforcementlearningarchitecturetolearnandpl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。