2012年各地中考数学 压轴题精选21~30(解析版).doc

2012年各地中考数学 压轴题精选21~30(解析版).doc

ID:53307141

大小:494.00 KB

页数:20页

时间:2020-04-03

2012年各地中考数学 压轴题精选21~30(解析版).doc_第1页
2012年各地中考数学 压轴题精选21~30(解析版).doc_第2页
2012年各地中考数学 压轴题精选21~30(解析版).doc_第3页
2012年各地中考数学 压轴题精选21~30(解析版).doc_第4页
2012年各地中考数学 压轴题精选21~30(解析版).doc_第5页
资源描述:

《2012年各地中考数学 压轴题精选21~30(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012年各地中考数学压轴题精选21~30_解析版【21.2012上海】24.如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当∠ECA=∠OAC时,求t的值.考点:相似三角形的判定与性质;待定系数法求二次函数解析式;全等三角形的判定与性质;勾股定理。解答:解:(1)二次函数y=ax

2、2+6x+c的图象经过点A(4,0)、B(﹣1,0),∴,解得,∴这个二次函数的解析式为:y=﹣2x2+6x+8;(2)∵∠EFD=∠EDA=90°∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA∴△EDF∽△DAO∴.∵,∴=,∴,∴EF=t.同理,∴DF=2,∴OF=t﹣2.(3)∵抛物线的解析式为:y=﹣2x2+6x+8,∴C(0,8),OC=8.如图,连接EC、AC,过A作EC的垂线交CE于G点.20用心爱心专心∵∠ECA=∠OAC,∴∠OAC=∠GCA(等角的余角相等);在△CAG与△OCA

3、中,,∴△CAG≌△OCA,∴CG=4,AG=OC=8.如图,过E点作EM⊥x轴于点M,则在Rt△AEM中,∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,由勾股定理得:∵AE2=AM2+EM2=;在Rt△AEG中,由勾股定理得:∴EG===∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4由勾股定理得:EF2+CF2=CE2,即,解得t1=10(不合题意,舍去),t2=6,∴t=6.20用心爱心专心【22.2012广东】22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点

4、C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).考点:二次函数综合题。解答:解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、

5、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)S△AEC=AE•OC=m,S△AED=s=m2;则:S△EDC=S△AEC﹣S△AED=﹣m2+m=﹣(m﹣)2+;∴△CDE的最大面积为,此时,AE=m=,BE=AB﹣AE=.过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:=,即:=∴EF=;20用心爱心专心∴以E点为圆心,与BC相切的圆的面积S⊙E=π•EF2=.【23.2012嘉兴】24.在平面直角坐标系xOy中,点P是抛物线:

6、y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.(1)如图1,当m=时,①求线段OP的长和tan∠POM的值;②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.①用含m的代数式表示点Q的坐标;②求证:四边形ODME是矩形.考点:二次函数综合题。解答:解:(1)①把x=代入y=x2,得y=2,∴P(,2),∴OP=∵PA丄x轴,∴PA∥

7、MO.∴tan∠P0M=tan∠0PA==.②设Q(n,n2),∵tan∠QOB=tan∠POM,∴.∴n=20用心爱心专心∴Q(,),∴OQ=.当OQ=OC时,则C1(0,),C2(0,);当OQ=CQ时,则C3(0,1).(2)①∵P(m,m2),设Q(n,n2),∵△APO∽△BOQ,∴∴,得n=,∴Q(,).②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得:解得b=1,∴M(0,1)∵,∠QBO=∠MOA=90°,∴△QBO∽△MOA∴∠MAO=∠QOB,∴QO∥MA同理可证:EM∥OD又∵∠EOD

8、=90°,∴四边形ODME是矩形.【24.2012贵州安顺】26.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。