资源描述:
《模式识别——感知器准则与Fisher算法实验.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实验二感知器准则与算法实验、【实验目的】贝叶斯分类方法是基于后验概率的大小进行分类的方法,有时需要进行概率密度函数的估计,而概率密度函数的估计通常需要大量样本才能进行,随着特征空间维数的增加,这种估计所需要的样本数急剧增加,使计算量大增。在实际问题中,人们可以不去估计概率密度,而直接通过与样本和类别标号有关的判别函数来直接将未知样本进行分类。这种思路就是判别函数法,最简单的判别函数是线性判别函数。采用判别函数法的关键在于利用样本找到判别函数的系数,模式识别课程中的感知器算法是一种求解判别函数系数的有效方法。本实验的目的是通过编制程序,实现感知器准则算法,并实现线性可分样本的分
2、类。本实验通过编制程序让初学者能够体会线性判别的基本思路,理解线性判别的基本思想,掌握线性判别问题的实质。、[实验内容].实验所用样本数据如表给出(其中每个样本空间(数据)为两维,表示第一维的值、表示第二维的值),编制程序实现ω、ω类ω、ω类的分类。分析分类器算法的性能。
具体要求、复习感知器算法;、写出实现批处理感知器算法的程序)从开始,将你的程序应用在ω和ω的训练数据上。记下收敛的步数。)将你的程序应用在ω和ω类上,同样记下收敛的步数。)试解释它们收敛步数的差别。、提高部分:ω和ω的前个点不是线性可分的,请手工构造非线性映射,使这些点在映射后的特征空间中是线性可分的,并对
3、它们训练一个感知器分类器。分析这个分类器对剩下的(变换后的)点分类效果如何?.准则下面表样本数据中的类别ω和ω计算最优方向。画出最优方向的直线,并标记出投影后的点在直线上的位置。
、【实验原理】线性判别函数的一般形式可表示成 其中根据选择投影方向的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向的函数为: 上面的公式是使用准则求最佳法线向量的解,该式比较重要。另外,该式这种形式的运算,我们称为线性变换,其中式一个向量,是的逆矩阵,如是维,和都是×维,得到的也是一个维的向量。 向量就是使准则函数达极大值的解,
4、也就是按准则将维空间投影到一维空间的最佳投影方向,该向量的各分量值是对原维特征向量求加权和的权值。以上讨论了线性判别函数加权向量的确定方法,并讨论了使准则函数极大的维向量的计算方法,但是判别函数中的另一项尚未确定,一般可采用以下几种方法确定如 或者 或当与已知时可用 …… 当确定之后,则可按以下规则分类, 使用准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。、【实验内容:】.实验所用样本数据如表给出(其中每个样本空间(数据)为两维,表示第一维的值、表示第二维的值),编制程序实现ω、ω类ω、ω
5、类的分类。分析分类器算法的性能。具体要求、复习感知器算法;、写出实现批处理感知器算法的程序)从开始,将你的程序应用在ω和ω的训练数据上。记下收敛的步数。)将你的程序应用在ω和ω类上,同样记下收敛的步数。)试解释它们收敛步数的差别。、提高部分:ω和ω的前个点不是线性可分的,请手工构造非线性映射,使这些点在映射后的特征空间中是线性可分的,并对它们训练一个感知器分类器。分析这个分类器对剩下的(变换后的)点分类效果如何?、【实验程序及结果:】()线性判别函数【源程序:】[];[];[];[(())];[(())];[(())];[];(());[];;(<):()()'*();(((
6、((<)))'))';;()((,:)(,:),'');((,:)(,:),'*')(((,:))((,:)));(((,:))((,:)));(((,:))((,:)));(((,:))((,:)));:();()*()()();();[];(());[];;(<)()()*();(((((<)))'))';;()((,:)(,:),'')((,:)(,:),'*')(((,:))((,:)));(((,:))((,:)));:();()*()()();()【实验结果:】.准则下面表样本数据中的类别ω和ω计算最优方向。画出最优方向的直线,并标记出投影后的点在直线上的位置。【
7、源程序:】中数据点的坐标[];[];[];将、、变为行向量(:);(:);(:);计算第一类的样本均值向量()();()();()();计算第一类样本类内离散度矩阵();[()()()()()()]'*[()()()()()()];的数据点坐标[];[];[];(:);(:);(:);计算第二类的样本均值向量()();()();()();计算第二类样本类内离散度矩阵();[()()()()()()]'*[()()()()()()];总类内离散度矩阵();;样本类间离散度矩阵();()'*();最优解^*