2013高考数学 解题方法攻略 数列求通项 理.doc

2013高考数学 解题方法攻略 数列求通项 理.doc

ID:53116299

大小:1.31 MB

页数:13页

时间:2020-04-01

2013高考数学 解题方法攻略 数列求通项 理.doc_第1页
2013高考数学 解题方法攻略 数列求通项 理.doc_第2页
2013高考数学 解题方法攻略 数列求通项 理.doc_第3页
2013高考数学 解题方法攻略 数列求通项 理.doc_第4页
2013高考数学 解题方法攻略 数列求通项 理.doc_第5页
资源描述:

《2013高考数学 解题方法攻略 数列求通项 理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、常见递推数列通项的求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。类型一:(可以求和)累加法例1、在数列中,已知=1,当时,有,求数列的通项公式。解析:上述个等式相加可得:评注:一般情况下,累加法里只有n-1个等式相加。类型一专项练习题:1、已知,(),求。2、已知数列,=2,=+3+2,求。3、已知数列满足,求数列的通项公式。4、已知中,,

2、求。5、已知,,求数列通项公式.6、已知数列满足求通项公式?()7、若数列的递推公式为,则求这个数列的通项公式-13-8、已知数列满足,求数列的通项公式。9、已知数列满足,,求。10、数列中,,(是常数,),且成公比不为的等比数列.(I)求的值;c=2(II)求的通项公式.11、设平面内有n条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这条直线交点的个数,则 5 ;当时,     (用表示).类型二:(可以求积)累积法例1、在数列中,已知有,()求数列的通项公式。解析:又也满

3、足上式;评注:一般情况下,累积法里的第一步都是一样的。类型二专项练习题:1、已知,(),求。2、已知数列满足,,求。3、已知中,,且,求数列的通项公式.4、已知,,求。5、已知,,求数列通项公式.6、已知数列满足,求通项公式?()-13-7、已知数列满足,求数列的通项公式。8、已知数列{an},满足a1=1,(n≥2),则{an}的通项9、设{an}是首项为1的正项数列,且(n+1)a-na+an+1·an=0(n=1,2,3,…),求它的通项公式.10、数列的前n项和为,且,=,求数列的通项公式.

4、类型三:待定常数法可将其转化为,其中,则数列为公比等于A的等比数列,然后求即可。例1在数列中,,当时,有,求数列的通项公式。解析:设,则,于是是以为首项,以3为公比的等比数列。类型三专项练习题:1、在数列中,,,求数列的通项公式。2、若数列的递推公式为,则求这个数列的通项公式3、已知数列{a}中,a=1,a=a+1求通项a.-13-4、在数列(不是常数数列)中,且,求数列的通项公式.5、在数列{an}中,求.6、已知数列满足求数列的通项公式.7、设二次方程x-x+1=0(n∈N)有两根α和β,且满足

5、6α-2αβ+6β=3.(1)试用表示a;(2)求证:数列是等比数列;(3)当时,求数列的通项公式8、在数列中,为其前项和,若,,并且,试判断是不是等比数列?是类型四:可将其转化为-----(*)的形式,列出方程组,解出还原到(*)式,则数列是以为首项,为公比的等比数列,然后再结合其它方法,就可以求出。例1在数列中,,,且求数列的通项公式。解析:令得方程组解得则数列是以为首项,以2为公比的等比数列-13-评注:在中,若A+B+C=0,则一定可以构造为等比数列。例2已知、,,求解析:令,整理得;两边同

6、除以得,,令,令,得,故是以为首项,为公比的等比数列。,即,得类型四专项练习题:-13-1、已知数列中,,,,求。2、已知a1=1,a2=,=-,求数列{}的通项公式.3、已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前项和。4、数列:,,求数列的通项公式。类型五:(且)一般需一次或多次待定系数法,构造新的等差数列或等比数列。例1设在数列中,,求数列的通项公式。解析:设展开后比较得这时是以3为首项,以为公比的等比数列-13-即,例2

7、在数列中,,求数列的通项公式。解析:,两边同除以得是以=1为首项,2为公差的等差数列。即例3在数列中,,求数列的通项公式。解析:在中,先取掉,得令,得,即;然后再加上得;两边同除以,得是以为首项,1为公差的等差数列。,评注:若中含有常数,则先待定常数。然后加上n的其它式子,再构造或待定。例4已知数列满足,求数列的通项公式。解析:在中取掉待定令,则,;再加上得,,整理得:,-13-令,则令;即;数列是以为首项,为公比的等比数列。,即;整理得类型5专项练习题:1、设数列的前n项和,求数列的通项公式。2、

8、已知数列中,点在直线上,其中(1)令求证:数列是等比数列;(2)求数列的通项;3、已知,,求。4、设数列:,求.5、已知数列满足,求通项6、在数列中,,求通项公式。7、已知数列中,,,求。8、已知数列{a},a=1,n∈N,a=2a+3n,求通项公式a.9、已知数列满足,求数列的通项公式。10、若数列的递推公式为,则求这个数列的通项公式-13-11、已知数列满足,求.12、已知数列满足,,求数列的通项公式。13、已知数列满足,求数列的通项公式。14、已知,,求。15、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。