苏教八上十二章轴对称知识点及典型例题(超经典).doc

苏教八上十二章轴对称知识点及典型例题(超经典).doc

ID:53048287

大小:288.00 KB

页数:8页

时间:2020-03-31

苏教八上十二章轴对称知识点及典型例题(超经典).doc_第1页
苏教八上十二章轴对称知识点及典型例题(超经典).doc_第2页
苏教八上十二章轴对称知识点及典型例题(超经典).doc_第3页
苏教八上十二章轴对称知识点及典型例题(超经典).doc_第4页
苏教八上十二章轴对称知识点及典型例题(超经典).doc_第5页
资源描述:

《苏教八上十二章轴对称知识点及典型例题(超经典).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、闻道教育轴对称知识点及典型例题轴对称知识点(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴

2、是任何一对对应点所连线段的垂直平分线。类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。5.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。(二)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称

3、.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,

4、y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。闻道教育轴对称知识点及典型例题关于谁谁不变,关于原点都相反(五)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(六)关于平行于坐标轴的直线对称(七)点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y

5、);(七)等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)(八)等边三角形(九)定义:三条边都相等的三角形,叫等边三角形。它是特殊的等腰三角形。1、性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。(2)三个角都相等的三角形是等边三角形。(3)有一个角是60º的等腰三

6、角形是等边三角形。(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。(九)其他结论(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。闻道教育轴对称知识点及典型例题作图题专练1.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.AC··DOB2.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图,在l上求作一点M,使得|AM-BM|最小

7、;作法:(2)如图,在l上求作一点M,使得|AM-BM|最大作法:(3)如图,在l上求作一点M,使得AM+BM最小.(4)如果两点位于直线异侧,请你去解决上述问题变式练习1、如图,已知直线MN与MN同侧两点A、B求作:点P,使点P在MN上,且∠APM=∠BPN2.如图点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;闻道教育轴对称知识点及典型例题3.如图已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小

8、.4、已知:如图点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;5、已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.6、一条河两岸有A、B两地,要设计一条道路,并在河上垂直于河岸架一座桥,用来连接A、B两地,问路线怎样走,桥应架在什么地方,才能使从A到B所走的路线最短?考点一、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。