欢迎来到天天文库
浏览记录
ID:52973731
大小:1.03 MB
页数:6页
时间:2020-04-05
《基于视觉的焊接三维重建技术研究现状.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、·综述与展望-王克鸿,等·基于视觉的焊接三维重建技术研究现状基于视觉的焊接三维重建技术研究现状王克鸿,杨嘉佳,孙科(南京理工大学材料科学与工程学院,江苏南京210094)摘要:焊接技术是工业生产不可或缺的工艺技术手段,传统焊前制定工艺、焊后品质检测的品质控制方法已经不能满足高效高质精密焊接的需求。利用光学传感器对熔池、工件、接缝等目标特征进行传感,通过三维重建方法获得目标的三维尺寸和形状,有利于提取焊接过程的品质信息并实现在线调整和机器人遥控焊接。文章分析了单目视觉、双目视觉和多目视觉三维重建方法,归纳了国内外焊接领域三维重建研究应用现状,重点针对弧焊特别是气体保护焊,综述了
2、结构光、阴影恢复法和双目立体法三种焊接接缝坡口和熔池三维重建的研究现状,并分析了焊接领域中三维重建研究存在的问题,提出了完善重建方法、提高重建准确度和效率是今后研究的重点。关键词:智能化焊接;视觉;三维重建;接缝;熔池中图分类号:TG40文献标志码:A文章编号:1671.5276(2013)01—0001.05ThelsearchStatusofVisual-BasedThree-DimensionalReconstructionTechnologyinWeldingWANGKe.hong.YANGJia-jia.SUNKe(DepartmentofMaterialScien
3、ceandEngineering,NanjingUniversityofScienceandTechnology,Nanjing210094,China)Abstract:Theweldingtechnologyisanindispensableprocesstechnologyofindustrialproduction.Traditionalweldingqualitycontrolmethod,whichconsistsofmakingprocessbeforeweldinganddetectingtheweldjointafterwelding,cannotmeett
4、hedemandofhigh—qualityandprecisionwelding.Byusingopticalsensors,theimageofweldpool,weldmentandweldseamcanbecaptured,thecharactersofthetargetscanbeextractedbyimageprocessingalgorithm,finallytherealsizeandshapeofthetargetscanbeex—tractedbythree—dimensionalreconstructionalgorithm,whichisbenefi
5、cialtoextractionofweldingqualityinformation,on—lineadjust-mentofweldingprocessanddevelopmentofremoterobotwelding.Inthispaper,thecommonthree—dimensionalmethods,whichisthemonocularvision,binocularvisionandmulti—viewstereovisiontmethodswerefirstlyanalyzed,andthentheoverviewofthree—dimensionalr
6、esearchesinwelding,especiallyingasmetalarcwelding(GMAW)process,wassummarized.Thethree—dimensionalreconstructionstatusofweldgroove,weldseamandweldpoolinGMAWwassummadzedinwhichtheStructured—Lightm~hod,theShape—From—ShadingmethodandtheBinocular—Stereomethodwereutilized.Atlastthesho~comingsofth
7、ree—dimensionalre·constructionmethodsinweldingmentionedabovewereanalyzed.Thecomplementofthereconstructionmethodsandtheimprove—mentofeficiencyandaccuracyofthereconstructionresultsinweldingshouldbethefocusoffollow—upstudy.keywords:intelligentwelding;visual
此文档下载收益归作者所有