欢迎来到天天文库
浏览记录
ID:52954755
大小:1.59 MB
页数:58页
时间:2020-04-04
《2020版高考数学总复习第八章立体几何初步第5节垂直关系课件文北师大版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5节 垂直关系最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线和一个平面内的_______一条直线都垂直,那么称这条直线和这个平面垂直.任何(2)判定定理与性质定理l⊥al⊥baαbα平`行a⊥αb⊥α如果一条直线和一个平面内的两条_____直线都垂直,那么该直线与此平面垂直(线线垂直⇒线面垂直)相交2.直线和平面所成的角(1)定义:一条斜线和它在平面上的_
2、________所成的_________叫作这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是_________;一条直线和平面平行或在平面内,则它们所成的角是0°的角.(2)范围:___________.射影锐角直角3.二面角(1)定义:从一条直线出发的______________所组成的图形叫做二面角;(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作__________的两条射线,这两条射线所成的角叫作二面角的平面角.(3)二面角的范围:[0,π].4.平面与平面垂直(1)平面与平面垂直的定义两个平面相交
3、,如果它们所成的二面角是_____________,就说这两个平面互相垂直.两个半平面直二面角垂直于棱(2)判定定理与性质定理垂线l⊥αlβ交线α⊥βα∩β=al⊥alβ[微点提醒]1.两个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线l与
4、平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或lα或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂
5、直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(必修2P40例3改编)已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.bαB.b∥αC.bα或b∥αD.b与α相交答案C3.(必修2P42A5改编)已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,有下列结论:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的是()A.①②③B.①②④C.②③④D.①②③④解析如图,因为PA⊥PB,PA⊥PC,PB∩PC=P,且PB平面PBC,PC平面PBC,所以PA
6、⊥平面PBC.又BC平面PBC,所以PA⊥BC,同理可得PB⊥AC,PC⊥AB,故①②③正确.答案A4.(2019·安徽江南十校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且mαB.m⊥n且n∥βC.m∥n且n⊥βD.m⊥n且α∥β解析由线线平行性质的传递性和线面垂直的判定定理,可知C正确.答案C5.(2017·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析如图,由题设知,A1B
7、1⊥平面BCC1B1且BC1平面BCC1B1,从而A1B1⊥BC1.又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E平面A1B1CD,所以A1E⊥BC1.答案C6.(2018·安阳二模)已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法错误的是()A.若a⊥α,b⊥β,α∥β,则a∥bB.若a⊥α,b⊥β,a⊥b,则α⊥βC.若a⊥α,a⊥b,α∥β,则b∥βD.若α∩β=a,a∥b,则b∥α或b∥β解析对于A,若a⊥α,α∥β,则a⊥β,又b⊥β,故a∥b,故A正确;对于B,若a⊥α,a⊥b
8、,则bα或b∥α,∴存在直线m⊂α,使得m∥b,又b⊥β,∴m⊥β,∴α⊥β.故B正确;对于C,若a⊥α,a⊥b,则bα或b∥α,又α∥β,所以b
此文档下载收益归作者所有