诊断试验与ROC曲线分析.pdf

诊断试验与ROC曲线分析.pdf

ID:52930729

大小:876.88 KB

页数:12页

时间:2020-04-01

诊断试验与ROC曲线分析.pdf_第1页
诊断试验与ROC曲线分析.pdf_第2页
诊断试验与ROC曲线分析.pdf_第3页
诊断试验与ROC曲线分析.pdf_第4页
诊断试验与ROC曲线分析.pdf_第5页
资源描述:

《诊断试验与ROC曲线分析.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、诊断试验与ROC曲线分析目录一、基本概念1.诊断试验四格表基本统计基本指标2.ROC曲线:二、实例分析1)各诊断项目(变量)分别诊断效果分析:2)诊断模型分析:3)比较两预测模型:4)时间依赖的ROC曲线(Time-dependentROC)分析一、基本概念1.诊断试验四格表基本统计基本指标诊断试验金标准诊断结果合计患病(D+)未患病(D-)阳性a(真阳性)b(假阳性)a+b阴性c(假阴性)d(真阴性)c+d合计a+cb+dN=a+b+c+d1)检测患病率(prevalence):是指被检测的全部

2、对象中,检测出来的患者的比例。即:检测患病率=(a+b)/(a+b+c+d)2)实际患病率(prevalence):是指被检测的全部对象中,真正患者的比例。即:实际患病率=(a+c)/(a+b+c+d)。实际患病率对被评价的诊断试验也称为验前概率,而预测值属于验后概率。3)敏感性:敏感性就是指由金标准确诊有病组内所检测出阳性病例数的比率(%)。即本实验诊断的真阳性率。其敏感性越高,漏诊的机会就越少。即:敏感性=a/(a+c)4)特异性:是指由金标准确诊为无病组内所检测出阴性人数的比率(%),即本诊

3、断实验的真阴性率。特异性越高,发生误诊的机会就越少。即:特异性=d/(b+d)5)诊断准确率:是指临床诊断检测出的真阳性和真阴性例数之和,占总检测人数的比例,即称本临床实验诊断的准确性。即:准确性=(a+d)/(a+b+c+d)6)阳性似然比(positivelikelihoodratio):阳性似然比是指临床诊断检测出的真阳性率与假阳性率之间的比值,即阳性似然比=敏感性/(1-特异性)=(a/(a+c))/(b/(b+d))。可用以描述诊断试验阳性时,患病与不患病的机会比。提示正确判断为阳性的可

4、能性是错误判断为阳性的可能性的倍数。阳性似然比数值越大,提示能够确诊患有该病的可能性越大。它不受患病率影响,比起敏感度和特异度更为稳定。7)阴性似然比(negativeliklihoodratio):阴性似然比是指临床实验诊断检测出的假阴性率与真阴性率之比值,此值越小,说明该诊断方法越好。可用以描述诊断试验阴性时,患病与不患病的机会比。阴性似然比提示错误判断为阴性的可能性是正确判断为阴性的可能性的倍数。阴性似然比数值越小,提示能够否定患有该病的可能性越大。阴性似然比=(1-敏感性)/特异性=(c/

5、(a+c))/(d/(b+d))8)诊断比值比(OR):阳性似然比与阴性似然比的比值。数值越大,表明诊断试验区分患者与非患者的能力越大。诊断比值比=(a/(a+c)/(b/(b+d))/(c/(a+c)/(d/(b+d)))=(ab)/(cd)9)诊断所需检测数(NND):真阳性率(敏感度)与假阳性率(1-特异度)的差的倒数。诊断所需检测数,(NND)=1/(a/(a+c)-b/(b+d))10)Yuden指数:Yuden指数=敏感性+特异性-1=a/(a+c)+d/(b+d)-111)阳性预测值

6、(postivepredictivevalue):又称预测阳性结果的正确率,是指待评价的诊断试验结果判为阳性例数中,真正患某病的例数所占的比例。即:阳性预测值=真阳性/(真阳性+假阳性)=a/(a+b)12)阴性预测值(negativepredictivevalue):又称预测阴性结果的正确率,是指临床诊断实验检测出的全部阴性例数中,真正没有患本病的例数所占的比例。即:阴性预测值=真阴性/(真阴性+假阴性)=d/(c+d)2.ROC曲线:1)概念:称受试者工作曲线,可以综合考虑一项诊断试验(定量指

7、标)或预测模型(模型的预测值)在所有诊断界值时的灵敏度和特异度。对于每一个诊断界值,都可以得到相应的灵敏度和特异度。ROC曲线是以(1-特异度)为横坐标,以灵敏度为纵坐标绘制而成的曲线,它用线段连接每个诊断界值对应的[(1-特异度),灵敏度]的点。对于连续变量,诊断界值可以取任意一个。对有序分类变量,由不同的诊断结果作为诊断界值时,对应于不同的灵敏度和特异度,将每种诊断结果对应的[(1-特异度),灵敏度]的点,标在直角坐标系中,用线段连接各相邻两点,即为有序分类资料的ROC曲线。2)ROC曲线下面

8、积(AUC):表示所有灵敏度时诊断试验平均特异度,或者所有特异度时诊断试验的平均灵敏度。通常,ROC曲线下面积在0.5-1之间。曲线下从原点到右上角的对角线称为机会线,表示无论取任诊断界值,灵敏度=1-特异度,即真阳性率=假阳性率,意味着无论患者和非患者都有同样的“机会”被诊断为阳性。ROC曲线越接近机会线,即曲线下面积越接近0.5,表明诊断试验区分患者和非患者的能力越弱;越接近1,表明诊断试验的准确度越强。一般认为,0.50-0.70之间,诊断价值较小;0.70-0.90之间,诊

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。