八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx

八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx

ID:52816243

大小:14.15 MB

页数:23页

时间:2020-03-17

八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx_第1页
八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx_第2页
八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx_第3页
八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx_第4页
八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx_第5页
资源描述:

《八年级数学下册20数据的整理与初步认识小结与复习教学课件新版华东师大版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小结与复习学练优八年级数学下(HS)教学课件第20章数据的整理和初步处理要点梳理考点讲练课堂小结课后作业要点梳理一、数据的代表平均数定义一组数据的平均值称为这组数据的平均数算术平均数一般地,如果有n个数x1,x2,…,xn,那么叫做这n个数的平均数加权平均数一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则叫做这n个数的加权平均数.最多中间位置的数两个数据的平均数中位数定义将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于________________就是这组数据的中位数,如果数据的个数是偶数

2、,则中间_________________________就是这组数据的中位数防错提醒确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定众数定义一组数据中出现次数________的数据叫做这组数据的众数防错提醒(1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来分析平均数大表示波动的量定义意义方差设有n个数据x1,x2,x3,…,xn,各数据与它们的______的差的平方分别是(x1-x)2,(x2-x)2,…,(xn-x)2,我们用它们的平均数,

3、即用_____________________________来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差越大,数据的波动越________,反之也成立二、数据的波动例1.下表是王勇家去年1-6月份的用水情况:则王勇家去年1-6月份的月平均用水量为(  )A.3吨B.3.5吨C.4吨D.4.5吨C考点一平均数和加权平均数考点讲练解析:(3+4+3.5+3+4.5+6)÷6=24÷6=4(吨).故选C.1.某广告公司欲招聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:测试项目测试

4、成绩ABC创新728567综合知识507470语言884567针对训练(1)如果根据三项测试的平均成绩决定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?解:(1)A的平均成绩为(72+50+88)/3=70(分).B的平均成绩为(85+74+45)/3=68(分).C的平均成绩为(67+70+67)/3=68(分).由70>68,故A被录用.(2)根据题意,A的测试成绩为B的测试成绩为C的测试成绩为因此候选人B将被录用.4,3,1分别是创新、综合知识

5、、语言三项测试成绩的权,而称(72×4+50×3+88×1)÷(4+3+1)为A的三项测试成绩的加权平均数.例2.某班体育委员统计了全班45名同学一周的体育锻炼时间,并绘制了如图所示的折线统计图,则在体育锻炼时间这组数据中,众数和中位数分别是(  )A.18,18B.9,9C.9,10D.18,9B考点二中位数和众数解析:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,所以中位数是9.故选B.2.某公司有15名员工,他们所在的部门及相应每人所创的年利润(万

6、元/人.年)如下表所示:部门ABCDEFG人数1124223利润2052.52.11.51.51.2根据表中提供的信息填空:1、该公司每人所创年利润的平均数是()万元,中位数是()万元,众数是()万元.3.22.11.5和2.1针对训练例3.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙1考点三方差及其应用甲、乙射击成绩折线图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规

7、定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?解:(1)根据折线统计图,得乙的射击成绩为2,4,6,8,7,7,8,9,9,10,平均数为(环)中位数为7.5环,方差为[(2-7)2+(4-7)2+(6-7)2+(8-7)2+(7-7)2+(7-7)2+(8-7)2+(9-7)2+(9-7)2+(10-7)2]=5.4.根据折线统计图,知甲除第八次外的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7,则甲第八次成绩为70-(9+6+7+6+

8、2+7+7+8+9)=9(环),所以甲的射击成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环,平均数为(2+6+6+7+7+7+8+9+9+9)=7(环),方差为[(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。