学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt

学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt

ID:52776148

大小:411.50 KB

页数:48页

时间:2020-04-13

学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt_第1页
学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt_第2页
学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt_第3页
学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt_第4页
学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt_第5页
资源描述:

《学年高中数学14生活中的优化问题举例课件新人教A版选修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4生活中的优化问题举例12能利用导数知识解决实际生活中的最优化问题.34本节重点:利用导数知识解决实际中的最优化问题.本节难点:将实际问题转化为数学问题,建立函数模型.561.解决实际应用问题的基本步骤一般地,高考中的数学应用往往是以现实生活为原型设计的,其目的在于考查学生对数学语言的阅读、理解、表达与转化能力,求解时一般按以下几步进行:(1)阅读理解,认真审题.就是读懂题中的文字叙述,理解叙述所反映的实际背景,领悟实际背景中的数学本质,写出题中的数量关系,实现应用问题向数学问题转化.7(2)引入数学

2、符号,建立数学模型.一般地,设自变量为x,函数为y,并用x表示相关的量,运用已掌握的数学知识、物理知识及其他相关的知识,将问题中的数量关系表示为一个数学关系式,实现问题的数学化,即建立数学模型.(3)运用数学知识和方法解决上述问题.(4)检验结果的实际意义并给出答案.82.求最优化问题的步骤求实际问题中的最大(小)值,主要步骤如下:(1)抽象出实际问题的数学模型,列出变量之间的函数关系式y=f(x);(2)求出函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的取值

3、大小,最大者为最大值,最小者为最小值.9101.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系式,这需要通过分析、联想、抽象和转化完成,函数的最值要由和确定,当定义域是且函数只有一个时,这个也就是它的.2.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为.通过前面的学习,我们知道是求函数最大(小)值的有力工具,运用可以解决一些生活中的.极值端点的函数值开区间极值极值最值优化问题导数导数优化问题1112[例1]在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它的边

4、沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?13[分析]根据所给几何体的体积公式建模.[解析]设箱高为xcm,则箱底边长为(60-2x)cm,则得箱子容积V是x的函数,V(x)=(60-2x)2·x(00,当10

5、x)的最大值.答:当箱子的高为10cm,底面边长为40cm时,箱子的体积最大.[点评]在解决实际应用问题中,如果函数在区间内只有一个极值点,那么只需根据实际意义判定是最大值还是最小值.不必再与端点的函数值进行比较.15已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值.[解析]设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,S圆柱侧=2πrh,1617[例2]有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50k

6、m,两厂在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?18[分析]根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变元,构造相应的函数关系,通过求导的方法或其他方法求出函数的最小值,可确定点C的位置.19[解析]解法1:根据题意知,只有点C在线段AD上某一适当位置,才能使总运费最省,设C点距D点xkm,则∵BD=40,AC=50-x,令y′=0,解得x=30.当0

7、时,y′<0;当300.20因此函数在x=30(km)处取得最小值,此时AC=50-x=20(km).∴供水站建在A,D之间距甲厂20km处,可使水管费用最省.212223[点评]解决实际应用问题关键在于建立数学模型和目标函数,把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化、形式化、抽象成数学问题,再划归为常规问题,选择合适的数学方法求解.对于这类问题,学生往往忽视了数学语言和普通语言的理解与转换,从而造成了解决应用问题的最大思维障碍.运算不过关,得不到正确的

8、答案,对数学思想方法不理解或理解不透彻,则找不到正确的解题思路,在此需要我们依据问题本身提供的信息,利用所谓的动态思维,去寻求有利于问题解决的变换途径和方法,并从中进行一番选择.24设有一个容积V一定的有铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,问如何设计使总造价最小?[解析]设圆柱体的高为h,底面半径为r,又设单位面积铁的造价为m,桶的总造价为y,则y=3mπr2+m(πr2+2πrh).2526答:当此铁桶

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。