欢迎来到天天文库
浏览记录
ID:52720038
大小:95.50 KB
页数:8页
时间:2020-03-29
《涡街流量计原理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、涡街流量计原理2007-12-2401:33把一个非流线型阻流体2、系来测量流量的仪表。 1.卡门涡街的产生与现象 为说明卡门涡街的产生,我们来考虑粘性流体绕流圆柱体的流动.当流体速度很低时,流体在前驻点速度为零,来流沿圆柱左右两侧流动,在圆柱体前半部分速度逐渐增大,压力下降,后半部分速度下降,压力升高,在后驻点速度又为零.这时的流动与理想流体统流圆柱体相同,无旋涡产生,如图3—7a所示. 随着来流速度增加,圆柱体后半部分的压力梯度增大,引起流体附面层的分离,如图3—7b所示.当来流的雷诺数Re再增大,达到40左右时,由于圆柱体后半部附面层中的流体3、微团受到更大的阻滞,就在附面层的分离点S处产生一对旋转方面相反的对称旋涡.如图3-7c所示.在一定的留诺数Re范围内,稳定的卡门涡街的及旋涡脱落频率与流体流速成正比.图3-7 圆柱绕涡街产生示意图2.卡门涡街的稳定条件并非在任何条件下产生的涡街都是稳定的.冯·卡门在理论上已证明稳定的涡街条件是:涡街两列旋涡之间的距离为h,单列两涡之间距离为,若两者之间关系满足 =1 或 h/=0.281 4、 <3-24)时所产生的涡街是稳定的。 3.涡街运动速度为了导出旋涡脱落频率与流速之间的关系,首先要得到涡街本身的运动速度.为便于讨论,我们假定在旋涡发生体上游的来源是无旋、稳定的流动,即其速度环量为零.从汤姆生定理可知,在旋涡发生体下游所产生的两列对应旋涡的速度环量,必然大小相等,方向相反,其合环量为零,由于对应两涡的旋向相反,速度环量大小相等,所以在整个涡群的相互作用下,涡街将以一个稳定的速度向上游运动.从理论计算可得.的表示式为 =5、tanh (3-25>8/8对于稳定的涡街,将式<3-25)代入,有: =tanh(0.281>= (3-26>4.流体流速与旋涡脱落频率的关系 从前面讨论可知,当流体以流速u流动时,相对于旋涡发生体,涡街的实际向下游运动速度为u-ur.如果单列旋涡的产生频率为每秒f个旋涡,那么,流速与频率的关系为 u-ur=fl 6、 (3-27> 将式(3-26>代入,可得到流速u与旋涡脱落频率f之间的关系.但是,在实际上不可能测得速度环量的数值,所以只能通过实验来确定来流速度u与涡街上行速度ur之间的关系,确定因注形旋涡发生体直径d与涡街宽度h之间的关系,有:h=1.3d <3-28)ur=0.14u <3-29)将式<3-24),<3-27),<3-28),<3-29)联立,可得: 7、 f=== <3-29’) 0.2u/d也可将上式写成: St=0.2 (3-30>St称为斯特罗哈数.从实验可知,在雷诺数Re为3×l02-3×l05范围内,流体速度u与旋涡脱落频率的关系是确定的.也就是说,对于圆柱形旋涡发生体,在这个范围内它的斯特罗哈数St是常数,并约等于0.2,与理论计算值吻合的很好.对于圆柱型式的旋涡发生体,其斯特罗哈数St也是常数,8、但有它自己的数值.图3-8为圆往型旋涡发生体产生的涡街结构.根据以上分析,从流体力学的角度可以判定涡街流量计测量的上下限流量为:Re=3×102-2×l05.当雷诺数更大时,圆柱体周围的边界层将变成紊流,不符合上述规律,并且将会是不稳定的.图3-8 涡街结构示意图8/85.流体振动原理 当涡街在旋涡发生体下游形成以后,仔细观察其运动,可见它一面以速度u-ur平行于轴线运动,另外还在与轴线垂直方向上振动.这说明流体在产生旋涡的同
2、系来测量流量的仪表。 1.卡门涡街的产生与现象 为说明卡门涡街的产生,我们来考虑粘性流体绕流圆柱体的流动.当流体速度很低时,流体在前驻点速度为零,来流沿圆柱左右两侧流动,在圆柱体前半部分速度逐渐增大,压力下降,后半部分速度下降,压力升高,在后驻点速度又为零.这时的流动与理想流体统流圆柱体相同,无旋涡产生,如图3—7a所示. 随着来流速度增加,圆柱体后半部分的压力梯度增大,引起流体附面层的分离,如图3—7b所示.当来流的雷诺数Re再增大,达到40左右时,由于圆柱体后半部附面层中的流体
3、微团受到更大的阻滞,就在附面层的分离点S处产生一对旋转方面相反的对称旋涡.如图3-7c所示.在一定的留诺数Re范围内,稳定的卡门涡街的及旋涡脱落频率与流体流速成正比.图3-7 圆柱绕涡街产生示意图2.卡门涡街的稳定条件并非在任何条件下产生的涡街都是稳定的.冯·卡门在理论上已证明稳定的涡街条件是:涡街两列旋涡之间的距离为h,单列两涡之间距离为,若两者之间关系满足 =1 或 h/=0.281
4、 <3-24)时所产生的涡街是稳定的。 3.涡街运动速度为了导出旋涡脱落频率与流速之间的关系,首先要得到涡街本身的运动速度.为便于讨论,我们假定在旋涡发生体上游的来源是无旋、稳定的流动,即其速度环量为零.从汤姆生定理可知,在旋涡发生体下游所产生的两列对应旋涡的速度环量,必然大小相等,方向相反,其合环量为零,由于对应两涡的旋向相反,速度环量大小相等,所以在整个涡群的相互作用下,涡街将以一个稳定的速度向上游运动.从理论计算可得.的表示式为 =
5、tanh (3-25>8/8对于稳定的涡街,将式<3-25)代入,有: =tanh(0.281>= (3-26>4.流体流速与旋涡脱落频率的关系 从前面讨论可知,当流体以流速u流动时,相对于旋涡发生体,涡街的实际向下游运动速度为u-ur.如果单列旋涡的产生频率为每秒f个旋涡,那么,流速与频率的关系为 u-ur=fl
6、 (3-27> 将式(3-26>代入,可得到流速u与旋涡脱落频率f之间的关系.但是,在实际上不可能测得速度环量的数值,所以只能通过实验来确定来流速度u与涡街上行速度ur之间的关系,确定因注形旋涡发生体直径d与涡街宽度h之间的关系,有:h=1.3d <3-28)ur=0.14u <3-29)将式<3-24),<3-27),<3-28),<3-29)联立,可得:
7、 f=== <3-29’) 0.2u/d也可将上式写成: St=0.2 (3-30>St称为斯特罗哈数.从实验可知,在雷诺数Re为3×l02-3×l05范围内,流体速度u与旋涡脱落频率的关系是确定的.也就是说,对于圆柱形旋涡发生体,在这个范围内它的斯特罗哈数St是常数,并约等于0.2,与理论计算值吻合的很好.对于圆柱型式的旋涡发生体,其斯特罗哈数St也是常数,
8、但有它自己的数值.图3-8为圆往型旋涡发生体产生的涡街结构.根据以上分析,从流体力学的角度可以判定涡街流量计测量的上下限流量为:Re=3×102-2×l05.当雷诺数更大时,圆柱体周围的边界层将变成紊流,不符合上述规律,并且将会是不稳定的.图3-8 涡街结构示意图8/85.流体振动原理 当涡街在旋涡发生体下游形成以后,仔细观察其运动,可见它一面以速度u-ur平行于轴线运动,另外还在与轴线垂直方向上振动.这说明流体在产生旋涡的同
此文档下载收益归作者所有