欢迎来到天天文库
浏览记录
ID:22715382
大小:115.01 KB
页数:12页
时间:2018-10-31
《《涡街流量计原理》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、涡街流量计原理2007-12-2401:33把一个非流线型阻流体(BluffBody)垂直插入管道中,随着流体绕过阻流体流动,产生附面层分离现象,形成有规则的旋涡列,左右两侧旋涡的旋转方向相反。这种旋涡称为卡门涡街。根据卡门的研究,这些涡列多数是不稳定的,只有形成相互交替的内旋的两排涡列,且涡列宽度h与同列相邻的两旋涡的间距l之比满足 =0.281(对圆柱形旋涡发生体)时,这样的涡列才是稳定的。生产旋涡分离的阻流体称为旋涡发生体。涡街流量计是根据旋涡脱离旋涡发生体的频率与流量之间的关系来测量流量的仪表。 1.卡
2、门涡街的产生与现象 为说明卡门涡街的产生,我们来考虑粘性流体绕流圆柱体的流动.当流体速度很低时,流体在前驻点速度为零,来流沿圆柱左右两侧流动,在圆柱体前半部分速度逐渐增大,压力下降,后半部分速度下降,压力升高,在后驻点速度又为零.这时的流动与理想流体统流圆柱体相同,无旋涡产生,如图3—7a所示. 随着来流速度增加,圆柱体后半部分的压力梯度增大,引起流体附面层的分离,如图3—7b所示.当来流的雷诺数Re再增大,达到40左右时,由于圆柱体后半部附面层中的流体微团受到更大的阻滞,就在附面层的分离点S处产生一对旋转方面相反的对称旋涡.如
3、图3-7c所示.在一定的留诺数Re范围内,稳定的卡门涡街的及旋涡脱落频率与流体流速成正比.图3-7 圆柱绕涡街产生示意图2.卡门涡街的稳定条件并非在任何条件下产生的涡街都是稳定的.冯·卡门在理论上已证明稳定的涡街条件是:涡街两列旋涡之间的距离为h,单列两涡之间距离为,若两者之间关系满足 =1 或 h/=0.281 (3-24)时所产生的涡街是稳定的。 3.涡街运动速度为了导出旋涡脱落频
4、率与流速之间的关系,首先要得到涡街本身的运动速度.为便于讨论,我们假定在旋涡发生体上游的来源是无旋、稳定的流动,即其速度环量为零.从汤姆生定理可知,在旋涡发生体下游所产生的两列对应旋涡的速度环量,必然大小相等,方向相反,其合环量为零,由于对应两涡的旋向相反,速度环量大小相等,所以在整个涡群的相互作用下,涡街将以一个稳定的速度向上游运动.从理论计算可得.的表示式为 =tanh (3-25)对于稳定的涡街,将式(3-25)代入,有:
5、=tanh(0.281)= (3-26)4.流体流速与旋涡脱落频率的关系 从前面讨论可知,当流体以流速u流动时,相对于旋涡发生体,涡街的实际向下游运动速度为u-ur.如果单列旋涡的产生频率为每秒f个旋涡,那么,流速与频率的关系为 u-ur=fl (3-27) 将式(3-26)代入,可得到流速u与旋涡脱落频率f之间的关系.但是,在实际上不可能测得速度环量的数值,所以只能通过实验来确定来流速度u与涡
6、街上行速度ur之间的关系,确定因注形旋涡发生体直径d与涡街宽度h之间的关系,有:h=1.3d (3-28)ur=0.14u (3-29)将式(3-24),(3-27),(3-28),(3-29)联立,可得: f=== (3-29’) 0.2u/d也可将上式写成: St=0.2 (3-30)St
7、称为斯特罗哈数.从实验可知,在雷诺数Re为3×l02-3×l05范围内,流体速度u与旋涡脱落频率的关系是确定的.也就是说,对于圆柱形旋涡发生体,在这个范围内它的斯特罗哈数St是常数,并约等于0.2,与理论计算值吻合的很好.对于圆柱型式的旋涡发生体,其斯特罗哈数St也是常数,但有它自己的数值.图3-8为圆往型旋涡发生体产生的涡街结构.根据以上分析,从流体力学的角度可以判定涡街流量计测量的上下限流量为:Re=3×102-2×l05.当雷诺数更大时,圆柱体周围的边界层将变成紊流,不符合上述规律,并且将会是不稳定的.图3-8 涡街结构示意图
8、5.流体振动原理 当涡街在旋涡发生体下游形成以后,仔细观察其运动,可见它一面以速度u-ur平行于轴线运动,另外还在与轴线垂直方向上振动.这说明流体在产生旋涡的同时还受到一个
此文档下载收益归作者所有